1
|
Theeke LA, Liu Y, Wang S, Luo X, Navia RO, Xiao D, Xu C, Wang K. Plasma Proteomic Biomarkers in Alzheimer's Disease and Cardiovascular Disease: A Longitudinal Study. Int J Mol Sci 2024; 25:10751. [PMID: 39409080 PMCID: PMC11477191 DOI: 10.3390/ijms251910751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The co-occurrence of Alzheimer's disease (AD) and cardiovascular diseases (CVDs) in older adults highlights the necessity for the exploration of potential shared risk factors. A total of 566 adults were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 111 individuals with AD, 383 with mild cognitive impairment (MCI), and 410 with CVD. The multivariable linear mixed model (LMM) was used to investigate the associations of AD and CVD with longitudinal changes in 146 plasma proteomic biomarkers (measured at baseline and the 12-month follow-up). The LMM showed that 48 biomarkers were linked to AD and 46 to CVD (p < 0.05). Both AD and CVD were associated with longitudinal changes in 14 biomarkers (α1Micro, ApoH, β2M, BNP, complement C3, cystatin C, KIM1, NGAL, PPP, TIM1, THP, TFF3, TM, and VEGF), and both MCI and CVD were associated with 12 biomarkers (ApoD, AXL, BNP, Calcitonin, CD40, C-peptide, pM, PPP, THP, TNFR2, TTR, and VEGF), suggesting intricate connections between cognitive decline and cardiovascular health. Among these, the Tamm Horsfall Protein (THP) was associated with AD, MCI, CVD, and APOE-ε4. This study provides valuable insights into shared and distinct biological markers and mechanisms underlying AD and CVD.
Collapse
Affiliation(s)
- Laurie A. Theeke
- Department of Community of Acute and Chronic Care, School of Nursing, The George Washington University, Ashburn, VA 20147, USA;
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Silas Wang
- Department of Statistics & Data Science, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06516, USA;
| | - R. Osvaldo Navia
- Department of Medicine and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | - Danqing Xiao
- Department of STEM, School of Arts and Sciences, Regis College, Weston, MA 02493, USA;
| | - Chun Xu
- Department of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Kesheng Wang
- Department of Biobehavioral Health & Nursing Science, College of Nursing, University of South Carolina, Columbia, 1601 Greene Street, Columbia, SC 29208, USA
| | | |
Collapse
|
2
|
Varma C, Luo E, Bostrom G, Bathini P, Berdnik D, Wyss‐Coray T, Zhao T, Dong X, Ervin FR, Beierschmitt A, Palmour RM, Lemere CA. Plasma and CSF biomarkers of aging and cognitive decline in Caribbean vervets. Alzheimers Dement 2024; 20:5460-5480. [PMID: 38946666 PMCID: PMC11350037 DOI: 10.1002/alz.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Vervets are non-human primates that share high genetic homology with humans and develop amyloid beta (Aβ) pathology with aging. We expand current knowledge by examining Aβ pathology, aging, cognition, and biomarker proteomics. METHODS Amyloid immunoreactivity in the frontal cortex and temporal cortex/hippocampal regions from archived vervet brain samples ranging from young adulthood to old age was quantified. We also obtained cognitive scores, plasma samples, and cerebrospinal fluid (CSF) samples in additional animals. Plasma and CSF proteins were quantified with platforms utilizing human antibodies. RESULTS We found age-related increases in Aβ deposition in both brain regions. Bioinformatic analyses assessed associations between biomarkers and age, sex, cognition, and CSF Aβ levels, revealing changes in proteins related to immune-related inflammation, metabolism, and cellular processes. DISCUSSION Vervets are an effective model of aging and early-stage Alzheimer's disease, and we provide translational biomarker data that both align with previous results in humans and provide a basis for future investigations. HIGHLIGHTS We found changes in immune and metabolic plasma biomarkers associated with age and cognition. Cerebrospinal fluid (CSF) biomarkers revealed changes in cell signaling indicative of adaptative processes. TNFRSF19 (TROY) and Artemin co-localize with Alzheimer's disease pathology. Vervets are a relevant model for translational studies of early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Curran Varma
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
| | - Eva Luo
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
| | - Gustaf Bostrom
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of Public Health and Caring SciencesGeriatrics, Uppsala UniversityUppsalaSweden
- Centre for Clinical ResearchUppsala UniversityVästmanland County HospitalVästeråsSweden
| | - Praveen Bathini
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Daniela Berdnik
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Tony Wyss‐Coray
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Tingting Zhao
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Xianjun Dong
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Genomics and Bioinformatics HubBrigham and Women's HospitalBostonMassachusettsUSA
| | - Frank R. Ervin
- Behavioral Sciences FoundationSaint Kitts, Eastern CaribbeanMontrealCanada
- Faculty of Medicine and Health SciencesMcGill UniversityMontrealCanada
| | - Amy Beierschmitt
- Behavioral Sciences FoundationSaint Kitts, Eastern CaribbeanMontrealCanada
- Department of Biomedical SciencesRoss University School of Veterinary MedicineSt KittsUK
| | - Roberta M. Palmour
- Behavioral Sciences FoundationSaint Kitts, Eastern CaribbeanMontrealCanada
- Faculty of Medicine and Health SciencesMcGill UniversityMontrealCanada
| | - Cynthia A. Lemere
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Krishnamurthy HK, Rajavelu I, Reddy S, Pereira M, Jayaraman V, Krishna K, Song Q, Wang T, Bei K, Rajasekaran JJ. Association of Apolipoprotein E (APOE) Polymorphisms With Serological Lipid and Inflammatory Markers. Cureus 2024; 16:e60721. [PMID: 38903305 PMCID: PMC11187349 DOI: 10.7759/cureus.60721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background The study aims to assess the association of apolipoprotein E (APOE) gene polymorphisms with serological lipid and inflammatory markers to determine their potential role in predicting the risk of cardiovascular diseases (CVDs) and Alzheimer's disease (AD). Methodology A total of 915 individuals underwent testing for lipid and inflammatory biomarkers at Vibrant America Clinical Laboratory. Clinical data, blood lipid and inflammatory profiles, and APOE genotyping were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results Compared to the E3/E3 genotype, individuals with E2/E3 genotypes showed higher levels of high-density lipoprotein (HDL), triglycerides, apolipoprotein A (APOA), high-sensitivity C-reactive protein (hs-CRP), and myeloperoxidase (MPO). E2/E4 genotype carriers had higher levels of HDL, triglycerides, Lp(a), and N-terminal pro b-type natriuretic peptide (BNPNT). E3/E4 genotypes were associated with elevated levels of total cholesterol, LDL, Lp(a), hs-CRP, small-density low-density lipoprotein (SDLDL), oxidized LDL (OXLDL), MPO, LDL-CAL, PLAC, and APOB. The E4/E4 group displayed higher concentrations of total cholesterol, LDL, APOB, Lp(a), hs-CRP, SDLDL, OXLDL, MPO, LDLCAL, and PLAC compared to E3/E3 carriers. These findings highlight the potential atherogenic effect of the ε4 allele and the protective effect of the ε2 allele based on lipid and inflammatory marker profiles. Conclusions This study provides strong evidence linking APOE gene polymorphism to abnormal serum lipid and inflammatory profiles. Individuals carrying the ε4 alleles exhibited dysregulated lipid metabolism and abnormal inflammatory markers, increasing their risk of CVD and AD. Early detection and prompt diagnosis are crucial for implementing therapeutic, dietary, and lifestyle interventions to mitigate risks and prevent or delay lipid and inflammation-related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Karthik Krishna
- Research & Development, Vibrant Sciences LLC, San Carlos, USA
| | - Qi Song
- Data Acquisition and Analysis, Vibrant America LLC, San Carlos, USA
| | - Tianhao Wang
- Data Acquisition and Analysis, Vibrant Sciences LLC, San Carlos, USA
| | - Kang Bei
- Data Acquisition and Analysis, Vibrant Sciences LLC, San Carlos, USA
| | | |
Collapse
|
4
|
Enyedi EE, Petukhov PA, Kozuch AJ, Dudek SM, Toth A, Fagyas M, Danilov SM. ACE Phenotyping in Human Blood and Tissues: Revelation of ACE Outliers and Sex Differences in ACE Sialylation. Biomedicines 2024; 12:940. [PMID: 38790902 PMCID: PMC11117852 DOI: 10.3390/biomedicines12050940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated ACE expression in tissues (which is generally reflected by blood ACE levels) is associated with an increased risk of cardiovascular diseases. Elevated blood ACE is also a marker for granulomatous diseases. Decreased blood ACE activity is becoming a new risk factor for Alzheimer's disease. We applied our novel approach-ACE phenotyping-to characterize pairs of tissues (lung, heart, lymph nodes) and serum ACE in 50 patients. ACE phenotyping includes (1) measurement of ACE activity with two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of these substrates (ZPHL/HHL ratio); (3) determination of ACE immunoreactive protein levels using mAbs to ACE; and (4) ACE conformation with a set of mAbs to ACE. The ACE phenotyping approach in screening format with special attention to outliers, combined with analysis of sequencing data, allowed us to identify patient with a unique ACE phenotype related to decreased ability of inhibition of ACE activity by albumin, likely due to competition with high CCL18 in this patient for binding to ACE. We also confirmed recently discovered gender differences in sialylation of some glycosylation sites of ACE. ACE phenotyping is a promising new approach for the identification of ACE phenotype outliers with potential clinical significance, making it useful for screening in a personalized medicine approach.
Collapse
Affiliation(s)
- Enikő E. Enyedi
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, 22 Moricz Zs., 4032 Debrecen, Hungary (A.T.)
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Ave., Chicago, IL 60612, USA;
| | - Alexander J. Kozuch
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Steven M. Dudek
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, 22 Moricz Zs., 4032 Debrecen, Hungary (A.T.)
| | - Miklós Fagyas
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, 22 Moricz Zs., 4032 Debrecen, Hungary (A.T.)
| | - Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| |
Collapse
|
5
|
Oliveira FFD, Almeida SSD, Chen ES, Smith MC, Bertolucci PHF. Pharmacogenetics of angiotensin modulators according to APOE-ϵ4 alleles and the ACE insertion/deletion polymorphism in Alzheimer's disease. Acta Neuropsychiatr 2023; 35:346-361. [PMID: 37605989 DOI: 10.1017/neu.2023.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
OBJECTIVE In Alzheimer's disease (AD), angiotensin II receptor blockers (ARBs) could reduce cerebrovascular dysfunction, while angiotensin-converting enzyme inhibitors (ACEis) might increase brain amyloid-β by suppressing effects of the angiotensin-converting enzyme 1, an amyloid-β-degrading enzyme. However, ACEis could benefit patients with AD by reducing the amyloidogenic processing of the amyloid precursor protein, by central cholinergic and anti-inflammatory mechanisms, and by peripheral modulation of glucose homeostasis. We aimed to investigate whether the ACE insertion/deletion polymorphism is associated with clinical changes in patients with AD, while considering apolipoprotein E (APOE)-ϵ4 carrier status and blood pressure response to angiotensin modulators. METHODS Consecutive outpatients with late-onset AD were screened with cognitive tests and anthropometric measurements, while their caregivers were queried for functional and caregiver burden scores. Prospective pharmacogenetic associations were estimated for 1 year, taking APOE-ϵ4 carrier status and genotypes of the ACE insertion/deletion polymorphism into account, along with treatment with ACEis or ARBs. RESULTS For 193 patients (67.4% women, 53.4% APOE-ϵ4 carriers), the ACE insertion/deletion polymorphism was in Hardy-Weinberg equilibrium (p = 0.281), while arterial hypertension was prevalent in 80.3% (n = 124 used an ACEi, n = 21 used an ARB). ARBs benefitted mostly APOE-ϵ4 carriers concerning caregiver burden variations, cognitive and functional decline. ACEis benefitted APOE-ϵ4 non-carriers concerning cognitive and functional decline due to improved blood pressure control in addition to possible central mechanisms. The ACE insertion/deletion polymorphism led to variable response to angiotensin modulators concerning neurological outcomes and blood pressure variations. CONCLUSION Angiotensin modulators may be disease-modifiers in AD, while genetic stratification of samples is recommended in clinical studies.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sandro Soares de Almeida
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elizabeth Suchi Chen
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Marilia Cardoso Smith
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
He KY, Khramtsova EA, Cabrera-Socorro A, Zhang Y, Li S, Sarver BAJ, Smets B, Li QS, De Muynck L, Parrado AR, Lovestone S, Black MH. Characterization of APOE Christchurch carriers in 455,306 UK Biobank participants. Mol Neurodegener 2023; 18:92. [PMID: 38017580 PMCID: PMC10685495 DOI: 10.1186/s13024-023-00684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Affiliation(s)
- Karen Y He
- Population Analytics & Insights, Data Science Analytics & Insights, Janssen R&D, Spring House, PA, USA.
| | - Ekaterina A Khramtsova
- Population Analytics & Insights, Data Science Analytics & Insights, Janssen R&D, Spring House, PA, USA.
| | | | - Yanfei Zhang
- Population Analytics & Insights, Data Science Analytics & Insights, Janssen R&D, Spring House, PA, USA
| | - Shuwei Li
- Population Analytics & Insights, Data Science Analytics & Insights, Janssen R&D, Spring House, PA, USA
| | - Brice A J Sarver
- Population Analytics & Insights, Data Science Analytics & Insights, Janssen R&D, Spring House, PA, USA
| | - Bart Smets
- Neuroscience Data Science, Janssen R&D, Beerse, Belgium
| | - Qingqin S Li
- Neuroscience Data Science, Janssen R&D, Titusville, NJ, USA
| | | | - Antonio R Parrado
- Population Analytics & Insights, Data Science Analytics & Insights, Janssen R&D, Spring House, PA, USA
| | | | - Mary Helen Black
- Population Analytics & Insights, Data Science Analytics & Insights, Janssen R&D, Spring House, PA, USA
| |
Collapse
|
7
|
Ullah R, Lee EJ. Advances in Amyloid-β Clearance in the Brain and Periphery: Implications for Neurodegenerative Diseases. Exp Neurobiol 2023; 32:216-246. [PMID: 37749925 PMCID: PMC10569141 DOI: 10.5607/en23014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
This review examines the role of impaired amyloid-β clearance in the accumulation of amyloid-β in the brain and the periphery, which is closely associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The molecular mechanism underlying amyloid-β accumulation is largely unknown, but recent evidence suggests that impaired amyloid-β clearance plays a critical role in its accumulation. The review provides an overview of recent research and proposes strategies for efficient amyloid-β clearance in both the brain and periphery. The clearance of amyloid-β can occur through enzymatic or non-enzymatic pathways in the brain, including neuronal and glial cells, blood-brain barrier, interstitial fluid bulk flow, perivascular drainage, and cerebrospinal fluid absorption-mediated pathways. In the periphery, various mechanisms, including peripheral organs, immunomodulation/immune cells, enzymes, amyloid-β-binding proteins, and amyloid-β-binding cells, are involved in amyloid-β clearance. Although recent findings have shed light on amyloid-β clearance in both regions, opportunities remain in areas where limited data is available. Therefore, future strategies that enhance amyloid-β clearance in the brain and/or periphery, either through central or peripheral clearance approaches or in combination, are highly encouraged. These strategies will provide new insight into the disease pathogenesis at the molecular level and explore new targets for inhibiting amyloid-β deposition, which is central to the pathogenesis of sporadic AD (amyloid-β in parenchyma) and CAA (amyloid-β in blood vessels).
Collapse
Affiliation(s)
- Rahat Ullah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
8
|
Delaby C, Hirtz C, Lehmann S. Overview of the blood biomarkers in Alzheimer's disease: Promises and challenges. Rev Neurol (Paris) 2023; 179:161-172. [PMID: 36371265 DOI: 10.1016/j.neurol.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The increasing number of people with advanced Alzheimer's disease (AD) represents a significant psychological and financial cost to the world population. Accurate detection of the earliest phase of preclinical AD is of major importance for the success of preventive and therapeutic strategies (Cullen et al., 2021). Advances in analytical techniques have been essential for the development of sensitive, specific and reliable diagnostic tests for AD biomarkers in biological fluids (cerebrospinal fluid and blood). Blood biomarkers hold promising potential for early and minimally invasive detection of AD, but also for differential diagnosis of dementia and for monitoring the course of the disease. The aim of this review is to provide an overview of current blood biomarkers of AD, from tau proteins and amyloid peptides to biomarkers of neuronal degeneration and inflammation, reactive and metabolic factors. We thus discuss the informative value of currently candidate blood biomarkers and their potential to be integrated into clinical practice for the management of AD in the near future.
Collapse
Affiliation(s)
- C Delaby
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France; Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Hirtz
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France
| | - S Lehmann
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France.
| |
Collapse
|
9
|
Apolipoprotein A-II, a Player in Multiple Processes and Diseases. Biomedicines 2022; 10:biomedicines10071578. [PMID: 35884883 PMCID: PMC9313276 DOI: 10.3390/biomedicines10071578] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoprotein A-II (apoA-II) is the second most abundant apolipoprotein in high-density lipoprotein (HDL) particles, playing an important role in lipid metabolism. Human and murine apoA-II proteins have dissimilar properties, partially because human apoA-II is dimeric whereas the murine homolog is a monomer, suggesting that the role of apoA-II may be quite different in humans and mice. As a component of HDL, apoA-II influences lipid metabolism, being directly or indirectly involved in vascular diseases. Clinical and epidemiological studies resulted in conflicting findings regarding the proatherogenic or atheroprotective role of apoA-II. Human apoA-II deficiency has little influence on lipoprotein levels with no obvious clinical consequences, while murine apoA-II deficiency causes HDL deficit in mice. In humans, an increased plasma apoA-II concentration causes hypertriglyceridemia and lowers HDL levels. This dyslipidemia leads to glucose intolerance, and the ensuing high blood glucose enhances apoA-II transcription, generating a vicious circle that may cause type 2 diabetes (T2D). ApoA-II is also used as a biomarker in various diseases, such as pancreatic cancer. Herein, we provide a review of the most recent findings regarding the roles of apoA-II and its functions in various physiological processes and disease states, such as cardiovascular disease, cancer, amyloidosis, hepatitis, insulin resistance, obesity, and T2D.
Collapse
|