1
|
Wang X, Liew SS, Huang J, Hu Y, Wei X, Pu K. Dual-Locked Enzyme-Activatable Bioorthogonal Fluorescence Turn-On Imaging of Senescent Cancer Cells. J Am Chem Soc 2024; 146:22689-22698. [PMID: 39101919 DOI: 10.1021/jacs.4c07286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Bioorthogonal pretargeting optical imaging shows the potential for enhanced diagnosis and prognosis. However, the bioorthogonal handles, known for being "always reactive", may engage in reactions at unintended sites with their counterparts, resulting in nonspecific fluorescence activation and diminishing detection specificity. Meanwhile, despite the importance of detecting senescent cancer cells in cancer therapy, current methods mainly rely on common single senescence-associated biomarkers, which lack specificity for differentiating between various types of senescent cells. Herein, we report a dual-locked enzyme-activatable bioorthogonal fluorescence (DEBOF) turn-on imaging approach for the specific detection of senescent cancer cells. A dual-locked bioorthogonal targeting agent (DBTA) and a bioorthogonally activatable fluorescent imaging probe (BAP) are synthesized as the biorthogonal pair. DBTA is a tetrazine derivative dually caged by two enzyme-cleavable moieties, respectively, associated with senescence and cancer, which ensures that its bioorthogonal reactivity ("clickability") is only triggered in the presence of senescent cancer cells. BAP is a fluorophore caged by trans-cyclooctane (TCO), whose fluorescence is only activated upon bioorthogonal reaction between its TCO and the decaged tetrazine of DBTA. As such, the DEBOF imaging approach differentiates senescent cancer cells from nonsenescent cancer cells or other senescent cells, allowing noninvasive tracking of the population fluctuation of senescent cancer cells in the tumor of living mice to guide cancer therapies. This study thus provides a general molecular strategy for biomarker-activatable in vivo bioorthogonal pretargeting imaging with the potential to be applied to other imaging modalities beyond optics.
Collapse
Affiliation(s)
- Xinzhu Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Si Si Liew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
2
|
Matveeva K, Vasilieva M, Minskaia E, Rybtsov S, Shevyrev D. T-cell immunity against senescence: potential role and perspectives. Front Immunol 2024; 15:1360109. [PMID: 38504990 PMCID: PMC10948549 DOI: 10.3389/fimmu.2024.1360109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
The development of age-associated diseases is related to the accumulation of senescent cells in the body. These are old non-functional cells with impaired metabolism, which are unable to divide. Such cells are also resistant to programmed cell death and prone to spontaneous production of some inflammatory factors. The accumulation of senescent cells is related to the age-associated dysfunction of organs and tissues as well as chronic inflammation that enhances with age. In the young organism, senescent cells are removed with the innate immunity system. However, the efficiency of this process decreases with age. Nowadays, more and more evidences are accumulating to support the involvement of specific immunity and T-lymphocytes in the fight against senescent cells. It has great physiological importance since the efficient elimination of senescent cells requires a high diversity of antigen-recognizing receptors to cover the entire spectrum of senescent-associated antigens with high precision and specificity. Developing the approaches of T-cell immunity stimulation to generate or amplify a physiological immune response against senescent cells can provide new perspectives to extend active longevity. In this mini-review, the authors summarize the current understanding of the role of T-cell immunity in the fight against senescent cells and discuss the prospects of stimulating adaptive immunity for combating the accumulation of senescent cells that occurs with age.
Collapse
|
3
|
de Luzy IR, Lee MK, Mobley WC, Studer L. Lessons from inducible pluripotent stem cell models on neuronal senescence in aging and neurodegeneration. NATURE AGING 2024; 4:309-318. [PMID: 38429379 PMCID: PMC11824472 DOI: 10.1038/s43587-024-00586-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Age remains the central risk factor for many neurodegenerative diseases including Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Although the mechanisms of aging are complex, the age-related accumulation of senescent cells in neurodegeneration is well documented and their clearance can alleviate disease-related features in preclinical models. Senescence-like characteristics are observed in both neuronal and glial lineages, but their relative contribution to aging and neurodegeneration remains unclear. Human pluripotent stem cell-derived neurons provide an experimental model system to induce neuronal senescence. However, the extensive heterogeneity in the profile of senescent neurons and the methods to assess senescence remain major challenges. Here, we review the evidence of cellular senescence in neuronal aging and disease, discuss human pluripotent stem cell-based model systems used to investigate neuronal senescence and propose a panel of cellular and molecular hallmarks to characterize senescent neurons. Understanding the role of neuronal senescence may yield novel therapeutic opportunities in neurodegenerative disease.
Collapse
Affiliation(s)
- Isabelle R de Luzy
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Michael K Lee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - William C Mobley
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Melo Dos Santos LS, Trombetta-Lima M, Eggen B, Demaria M. Cellular senescence in brain aging and neurodegeneration. Ageing Res Rev 2024; 93:102141. [PMID: 38030088 DOI: 10.1016/j.arr.2023.102141] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Cellular senescence is a state of terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory phenotype. In the brain, senescent cells naturally accumulate during aging and at sites of age-related pathologies. Here, we discuss the recent advances in understanding the accumulation of senescent cells in brain aging and disorders. Here we highlight the phenotypical heterogeneity of different senescent brain cell types, highlighting the potential importance of subtype-specific features for physiology and pathology. We provide a comprehensive overview of various senescent cell types in naturally occurring aging and the most common neurodegenerative disorders. Finally, we critically discuss the potential of adapting senotherapeutics to improve brain health and reduce pathological progression, addressing limitations and future directions for application and development.
Collapse
Affiliation(s)
- L S Melo Dos Santos
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands; School of Sciences, Health and Life, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Avenue, 6681, 90619-900 Porto Alegre, Brazil
| | - M Trombetta-Lima
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusiglaan 1, 9713AV Groningen, the Netherlands
| | - Bjl Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands.
| |
Collapse
|
5
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Solana-Fajardo J, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Markers of senescence are often associated with neuronal differentiation in the developing sensory systems. Histol Histopathol 2023; 38:493-502. [PMID: 36412998 DOI: 10.14670/hh-18-549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
It has been shown that senescent cells accumulate in transient structures of the embryo that normally degenerate during tissue development. A collection of biomarkers is generally accepted to define senescence in embryonic tissues. The histochemical detection of β-galactosidase activity at pH 6.0 (β-gal-pH6) is the most widely used assay for cellular senescence. Immunohistochemical detection of common mediators of senescence which block cell cycle progression, including p16, p21, p63, p15 or p27, has also been used to characterize senescent cells in the embryo. However, the reliability of this techniques has been discussed in recent publications because non-senescent cells are also labelled during development. Indeed, increased levels of senescent markers promote differentiation over apoptosis in developing neurons, suggesting that machinery used for the establishment of cellular senescence is also involved in neuronal maturation. Notably, it has recently been argued that a comparable state of cellular senescence might be adopted by terminally differentiated neurons. The developing sensory systems provide excellent models for studying if canonical markers of senescence are associated with terminal neuronal differentiation.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Jorge Solana-Fajardo
- Servicio de Oftalmología, Complejo Hospitalario Universitario de Badajoz, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| |
Collapse
|
6
|
Wagner KD, Wagner N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022; 11:cells11121966. [PMID: 35741095 PMCID: PMC9221567 DOI: 10.3390/cells11121966] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that senescent cells accumulate with aging. They are characterized by replicative arrest and the release of a myriad of factors commonly called the senescence-associated secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4, p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development, cancer, and tissue homeostasis. While many markers of senescence have been identified, none are able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in embryonic and postnatal development and potential functions in pathophysiology and homeostasis. The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care and detailed knowledge about the involvement of senescence and senescence-associated proteins in developmental processes and homeostatic mechanism. The review contributes to these topics, summarizes open questions, and provides some directions for future research.
Collapse
|