1
|
Erlandson KM, Geng LN, Selvaggi CA, Thaweethai T, Chen P, Erdmann NB, Goldman JD, Henrich TJ, Hornig M, Karlson EW, Katz SD, Kim C, Cribbs SK, Laiyemo AO, Letts R, Lin JY, Marathe J, Parthasarathy S, Patterson TF, Taylor BD, Duffy ER, Haack M, Julg B, Maranga G, Hernandez C, Singer N, Han J, Pemu P, Brim H, Ashktorab H, Charney AW, Wisnivesky J, Lin J, Chu HY, Go M, Singh U, Levitan EB, Goepfert PA, Nikolich JŽ, Hsu H, Peluso MJ, Kelly JD, Okumura M, Flaherman VJ, Quigley JG, Krishnan JA, Scholand MB, Hess R, Metz TD, Costantine MM, Rouse DJ, Taylor BS, Goldberg MP, Marshall GD, Wood J, Warren D, Horwitz L, Foulkes AS, McComsey GA. Differentiation of Prior SARS-CoV-2 Infection and Postacute Sequelae by Standard Clinical Laboratory Measurements in the RECOVER Cohort. Ann Intern Med 2024; 177:1209-1221. [PMID: 39133923 PMCID: PMC11408082 DOI: 10.7326/m24-0737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND There are currently no validated clinical biomarkers of postacute sequelae of SARS-CoV-2 infection (PASC). OBJECTIVE To investigate clinical laboratory markers of SARS-CoV-2 and PASC. DESIGN Propensity score-weighted linear regression models were fitted to evaluate differences in mean laboratory measures by prior infection and PASC index (≥12 vs. 0). (ClinicalTrials.gov: NCT05172024). SETTING 83 enrolling sites. PARTICIPANTS RECOVER-Adult cohort participants with or without SARS-CoV-2 infection with a study visit and laboratory measures 6 months after the index date (or at enrollment if >6 months after the index date). Participants were excluded if the 6-month visit occurred within 30 days of reinfection. MEASUREMENTS Participants completed questionnaires and standard clinical laboratory tests. RESULTS Among 10 094 participants, 8746 had prior SARS-CoV-2 infection, 1348 were uninfected, 1880 had a PASC index of 12 or higher, and 3351 had a PASC index of zero. After propensity score adjustment, participants with prior infection had a lower mean platelet count (265.9 × 109 cells/L [95% CI, 264.5 to 267.4 × 109 cells/L]) than participants without known prior infection (275.2 × 109 cells/L [CI, 268.5 to 282.0 × 109 cells/L]), as well as higher mean hemoglobin A1c (HbA1c) level (5.58% [CI, 5.56% to 5.60%] vs. 5.46% [CI, 5.40% to 5.51%]) and urinary albumin-creatinine ratio (81.9 mg/g [CI, 67.5 to 96.2 mg/g] vs. 43.0 mg/g [CI, 25.4 to 60.6 mg/g]), although differences were of modest clinical significance. The difference in HbA1c levels was attenuated after participants with preexisting diabetes were excluded. Among participants with prior infection, no meaningful differences in mean laboratory values were found between those with a PASC index of 12 or higher and those with a PASC index of zero. LIMITATION Whether differences in laboratory markers represent consequences of or risk factors for SARS-CoV-2 infection could not be determined. CONCLUSION Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC. PRIMARY FUNDING SOURCE National Institutes of Health.
Collapse
Affiliation(s)
- Kristine M. Erlandson
- University of Colorado, Anschutz Medical Campus; Department of Medicine, Division of Infectious Diseases; Aurora, CO
| | - Linda N. Geng
- Stanford University; Department of Medicine; Stanford, CA
| | | | | | - Peter Chen
- Cedars-Sinai Medical Center; Department of Medicine. Division of Pulmonary and Critical Care Medicine; New York, NY
- Women’s Guild Lung Institute at Cedars-Sinai Medical Center; New York, NY
| | - Nathan B. Erdmann
- University of Alabama at Birmingham, Department of Medicine, Division of Infectious Diseases, Birmingham, AL
| | - Jason D. Goldman
- Swedish Center for Research and Innovation, Providence Swedish Medical Center; Seattle, WA
- University of Washington, Division of Allergy and Infectious Diseases; Seattle, WA
| | - Timothy J. Henrich
- University of California San Francisco, Division of Experimental Medicine, San Francisco, CA
| | - Mady Hornig
- CORe Community Inc., New York, NY
- Columbia University Mailman School of Public Health, Department of Epidemiology, New York, NY
| | | | - Stuart D. Katz
- NYU Grossman School of Medicine, Department of Medicine, New York, NY
| | - C. Kim
- RECOVER Initiative, New York, NY
| | - Sushma K. Cribbs
- Emory University, School of Medicine, Department of Medicine, Atlanta, GA
- Atlanta Veterans Affairs Medical Center; Atlanta, Georgia
| | - Adeyinka O. Laiyemo
- Howard University College of Medicine, Department of Medicine, Division of Gastroenterology, Washington DC
| | | | - Janet Y. Lin
- University of Illinois Chicago, Department of Emergency Medicine, Chicago, IL
| | - Jai Marathe
- Boston University Medical Campus, Department of Medicine, Division of Infectious Diseases, Boston, MA
| | | | - Thomas F. Patterson
- University of Texas Health San Antonio, Department of Medicine, San Antonio, Texas
| | - Brittany D. Taylor
- RECOVER Initiative, New York, NY
- American Heart Association, Health Strategies, Atlanta, GA
| | | | - Monika Haack
- Beth Israel Deaconess Medical Center, Department of Neurology; Boston, MA
| | - Boris Julg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard; Boston, MA
| | - Gabrielle Maranga
- NYU Grossman School of Medicine, Department of Population Health, New York, NY
| | - Carla Hernandez
- Case Western Reserve University, Departments of Pediatrics and Medicine, Cleveland, OH
| | - Nora Singer
- Case Western Reserve University, Departments of Pediatrics and Medicine, Cleveland, OH
- Case Western Reserve University, Division of Rheumatology, Cleveland, OH
| | - Jenny Han
- Emory University, School of Medicine, Department of Medicine, Atlanta, GA
- Grady Hospital, Atlanta, GA
| | - Priscilla Pemu
- Morehouse School of Medicine, Department of Medicine, Atlanta, GA
| | - Hassan Brim
- Howard University, Department of Pathology, Washington, DC
| | | | | | - Juan Wisnivesky
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - Jenny Lin
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - Helen Y. Chu
- University of Washington, Division of Global Health, Seattle, WA
| | - Minjoung Go
- Stanford University; Department of Medicine; Stanford, CA
| | - Upinder Singh
- Stanford University; Department of Medicine; Stanford, CA
| | - Emily B. Levitan
- University of Alabama at Birmingham, Department of Epidemiology, Birmingham, AL
| | - Paul A. Goepfert
- University of Alabama at Birmingham, Department of Medicine, Division of Infectious Diseases, Birmingham, AL
| | - Janko Ž. Nikolich
- University of Arizona College of Medicine-Tucson, Department of Immunobiology, Tucson, AZ
- Arizona Center on Aging, Tucson, AZ
| | - Harvey Hsu
- Banner University Medical Center, Tucson, AZ
| | - Michael J. Peluso
- University of California San Francisco, Department of Medicine, Division of Infectious Diseases, San Francisco, CA
| | - J. Daniel Kelly
- University of California San Francisco, Department of Medicine, Division of Infectious Diseases, San Francisco, CA
| | - Megumi Okumura
- University of California San Francisco, Departments of Medicine and Pediatrics, San Francisco, CA
| | - Valerie J Flaherman
- University of California San Francisco, Department of Pediatrics, San Francisco, CA
| | - John G. Quigley
- University of Illinois Chicago, Department of Medicine, Division of Hematology/Oncology, Chicago, IL
| | | | - Mary Beth Scholand
- Spencer Fox Eccles School of Medicine at the University of Utah, Department of Medicine, Salt Lake City, UT
| | - Rachel Hess
- Spencer Fox Eccles School of Medicine at the University of Utah, Department of Medicine, Salt Lake City, UT
| | - Torri D. Metz
- University of Utah, Department of Obstetrics and Gynecology, Salt Lake City, UT
| | - Maged M. Costantine
- The Ohio State University, Division of Maternal Fetal Medicine, Columbus, OH
| | - Dwight J Rouse
- Brown University, Department of Obstetrics and Gynecology, Providence, RI
| | - Barbara S. Taylor
- University of Texas Health San Antonio, Department of Medicine, San Antonio, Texas
| | - Mark P. Goldberg
- University of Texas Health San Antonio, Department of Neurology, San Antonio, Texas
| | - Gailen D. Marshall
- University of Mississippi Medical Center, Department of Medicine, Jackson, MS
| | - Jeremy Wood
- The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - David Warren
- University of Nebraska Medical Center, Department of Neurological Sciences, Omaha, NE
| | - Leora Horwitz
- NYU Grossman School of Medicine, Department of Population Health, New York, NY
- Center for Healthcare Innovation and Delivery Science, NYU Langone Health, New York, NY
| | | | - Grace A McComsey
- Case Western Reserve University, Departments of Pediatrics and Medicine, Cleveland, OH
| |
Collapse
|
2
|
Pena C, Moustafa A, Mohamed AR, Grubb B. Autoimmunity in Syndromes of Orthostatic Intolerance: An Updated Review. J Pers Med 2024; 14:435. [PMID: 38673062 PMCID: PMC11051445 DOI: 10.3390/jpm14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Orthostatic intolerance is a broad term that represents a spectrum of dysautonomic disorders, including postural orthostatic tachycardia syndrome (POTS) and orthostatic hypotension (OH), as manifestations of severe autonomic failure. While the etiology of orthostatic intolerance has not yet fully been uncovered, it has been associated with multiple underlying pathological processes, including peripheral neuropathy, altered renin-aldosterone levels, hypovolemia, and autoimmune processes. Studies have implicated adrenergic, cholinergic, and angiotensin II type I autoantibodies in the pathogenesis of orthostatic intolerance. Several case series have demonstrated that immunomodulation therapy resulted in favorable outcomes, improving autonomic symptoms in POTS and OH. In this review, we highlight the contemporary literature detailing the association of autoimmunity with POTS and OH.
Collapse
Affiliation(s)
- Clarissa Pena
- Department of Internal Medicine, University of Toledo, Toledo, OH 43614, USA;
| | - Abdelmoniem Moustafa
- Division of Cardiovascular Medicine, University of Toledo, Toledo, OH 43614, USA; (A.M.); (B.G.)
| | - Abdel-Rhman Mohamed
- Department of Internal Medicine, University of Toledo, Toledo, OH 43614, USA;
| | - Blair Grubb
- Division of Cardiovascular Medicine, University of Toledo, Toledo, OH 43614, USA; (A.M.); (B.G.)
| |
Collapse
|
3
|
Kell DB, Khan MA, Kane B, Lip GYH, Pretorius E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. J Pers Med 2024; 14:170. [PMID: 38392604 PMCID: PMC10890060 DOI: 10.3390/jpm14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, 'fibrinaloid' microclots. We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body's exaggerated 'physiological' response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term 'fatigue'. Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Muhammed Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester M23 9LT, UK;
| | - Binita Kane
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Manchester University Foundation Trust and School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
4
|
Zein ELAbdeen SG, El-Dosouky II, M ELShabrawy A, Mohammed El Maghawry L. Atrial electromechanical delay in post-COVID-19 postural orthostatic tachycardia: Innocent bystander or pathologic factor. Indian Heart J 2023; 75:292-297. [PMID: 37321349 PMCID: PMC10263230 DOI: 10.1016/j.ihj.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Post-COVID-19 syndrome represents a wide range of ongoing symptoms that persist beyond weeks or even months, after recovery from the acute phase. Postural orthostatic tachycardia (POT) is one of these symptoms with a poorly recognized underlying pathophysiology. PURPOSE We aimed to investigate atrial electromechanical delay (AEMD), demonstrated by electrocardiographic P wave dispersion (PWD) and tissue Doppler echocardiography (TDE) in patients with POST-COVID-19 POT (PCPOT). METHODS 94 post-COVID-19 patients were enrolled and classified into two groups; PCPOT group, 34 (36.1%) patients, and normal heart rate (NR group), 60 (63.9%) patients. 31.9% of them were males and 68.1% were females, with a mean age of 35 ± 9 years. Both groups were compared in terms of PWD and AEMD. RESULTS As compared to the NR group, the PCPOT group showed a significant increase in PWD (49 ± 6 versus 25.6 ± 7.8, p < 0.001), higher CRP (37 ± 9 versus 30 ± 6, p = 0.04), prolonged left-atrial EMD, right-atrial EMD and inter-atrial EMD at (p = 0.006, 0.001, 0.002 respectively). Multivariate logistic regression analysis revealed that P wave dispersion (β 0.505, CI (0.224-1.138), p = 0.023), PA lateral (β 0.357, CI (0.214-0.697), p = 0.005), PA septal (β 0.651, CI. (0.325-0.861), p = 0.021), and intra-left atrial EMD (β 0.535, CI (0.353-1.346) p < 0.012) were independent predictors of PCPOT. CONCLUSION Atrial heterogenicity in the form of prolonged AEMD and PWD seems to be a reasonable underlying pathophysiology of PCPOT. This could provide a new concern during the management and novel pharmacological approaches in these patients.
Collapse
|
5
|
Jammoul M, Naddour J, Madi A, Reslan MA, Hatoum F, Zeineddine J, Abou-Kheir W, Lawand N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton Neurosci 2023; 245:103071. [PMID: 36580747 PMCID: PMC9789535 DOI: 10.1016/j.autneu.2022.103071] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Patients with long COVID suffer from many neurological manifestations that persist for 3 months following infection by SARS-CoV-2. Autonomic dysfunction (AD) or dysautonomia is one complication of long COVID that causes patients to experience fatigue, dizziness, syncope, dyspnea, orthostatic intolerance, nausea, vomiting, and heart palpitations. The pathophysiology behind AD onset post-COVID is largely unknown. As such, this review aims to highlight the potential mechanisms by which AD occurs in patients with long COVID. The first proposed mechanism includes the direct invasion of the hypothalamus or the medulla by SARS-CoV-2. Entry to these autonomic centers may occur through the neuronal or hematogenous routes. However, evidence so far indicates that neurological manifestations such as AD are caused indirectly. Another mechanism is autoimmunity whereby autoantibodies against different receptors and glycoproteins expressed on cellular membranes are produced. Additionally, persistent inflammation and hypoxia can work separately or together to promote sympathetic overactivation in a bidirectional interaction. Renin-angiotensin system imbalance can also drive AD in long COVID through the downregulation of relevant receptors and formation of autoantibodies. Understanding the pathophysiology of AD post-COVID-19 may help provide early diagnosis and better therapy for patients.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Judith Naddour
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Amir Madi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Hatoum
- Faculty of Medicine, American University of Beirut, Lebanon
| | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut, Lebanon.
| |
Collapse
|
6
|
Self-reported symptom burden in postural orthostatic tachycardia syndrome (POTS): A narrative review of observational and interventional studies. Auton Neurosci 2023; 244:103052. [PMID: 36525900 DOI: 10.1016/j.autneu.2022.103052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/27/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Postural Orthostatic Tachycardia Syndrome (POTS) is a chronic health condition affecting mostly women of childbearing age, and significantly impacting their health and quality of life. It is currently poorly understood with no approved licensed treatments. The aim of this systematic review was to contextualize the symptom burden of POTS, and review factors associated with this burden that may guide future treatments. The specific questions were (1) How does symptom burden in POTS compare to the burden in other long term conditions (LTCs), (2) Which factors are associated with POTS symptom burden, and (3) Which interventions show promise in reducing symptom burden in POTS. DATABASES AND DATA TREATMENT Electronic databases (CENTRAL, MEDLINE, EMBASE, CINAHL, PsycINFO, Web of Science, APA PsycArticles, OpenGrey) were searched from inception to January 2022 for observational studies reporting on the association between any biological, psychological or social factors and symptom burden, and randomized controlled trials reporting on interventions for symptom burden in adults with POTS. Two reviewers independently conducted eligibility screening, data extraction and quality assessment. A narrative synthesis was undertaken. RESULTS/CONCLUSION 5159 entries were screened for eligibility. Twenty-nine studies were included (1372 participants with POTS of a total sample size of 2314, 17 High-, 12 Medium-quality), seventeen were observational and twelve were randomized controlled experimental and intervention trials. Overall methodological quality of the evidence was medium-high but heterogeneity was high and sample sizes modest, allowing moderately robust conclusions. Orthostatic symptom burden was higher in POTS than other LTCs. Serum activity against adrenergic α1 receptors, physical functioning, depression, catastrophizing, prolonged cognitive stress testing and anxiety were significantly associated with symptom burden in medium-high quality studies. Preliminary medium-high quality evidence from predominantly proof-of-concept (n = 11) studies and one 3-month 2 × 2 factorial design trial suggest that compression garments, propranolol, pyridostigmine, desmopressin, and bisoprolol may hold promise in reducing symptom burden. Directions for future research include investigating associated factors over time, the development of complex interventions which address both biological and psychosocial factors associated with symptom burden, and effectiveness trials of these interventions. SIGNIFICANCE POTS symptom burden is high, particularly in relation to orthostatic intolerance when compared to other long-term conditions (LTCs). Despite this burden, there are no effectiveness randomized controlled trials of treatment to reduce symptoms in POTS. This review provides a starting point to understanding researched biological and psychosocial factors associated with this burden. There was however inconsistency in the measurement of symptom burden, lowering the confidence of cross-study inferences. A coherent definition of POTS symptom range, severity and impact along with a validated and reliable POTS-specific instrument is currently lacking. A standardized questionnaire to assess POTS symptom burden as a core outcome measure will help clarify future research and clinical practice.
Collapse
|
7
|
Everts PA, Mazzola T, Mautner K, Randelli PS, Podesta L. Modifying Orthobiological PRP Therapies Are Imperative for the Advancement of Treatment Outcomes in Musculoskeletal Pathologies. Biomedicines 2022; 10:biomedicines10112933. [PMID: 36428501 PMCID: PMC9687216 DOI: 10.3390/biomedicines10112933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Autologous biological cellular preparations have materialized as a growing area of medical advancement in interventional (orthopedic) practices and surgical interventions to provide an optimal tissue healing environment, particularly in tissues where standard healing is disrupted and repair and ultimately restoration of function is at risk. These cellular therapies are often referred to as orthobiologics and are derived from patient's own tissues to prepare point of care platelet-rich plasma (PRP), bone marrow concentrate (BMC), and adipose tissue concentrate (ATC). Orthobiological preparations are biological materials comprised of a wide variety of cell populations, cytokines, growth factors, molecules, and signaling cells. They can modulate and influence many other resident cells after they have been administered in specific diseased microenvironments. Jointly, the various orthobiological cell preparations are proficient to counteract persistent inflammation, respond to catabolic reactions, and reinstate tissue homeostasis. Ultimately, precisely delivered orthobiologics with a proper dose and bioformulation will contribute to tissue repair. Progress has been made in understanding orthobiological technologies where the safety and relatively easy manipulation of orthobiological treatment tools has been demonstrated in clinical applications. Although more positive than negative patient outcome results have been registered in the literature, definitive and accepted standards to prepare specific cellular orthobiologics are still lacking. To promote significant and consistent clinical outcomes, we will present a review of methods for implementing dosing strategies, using bioformulations tailored to the pathoanatomic process of the tissue, and adopting variable preparation and injection volume policies. By optimizing the dose and specificity of orthobiologics, local cellular synergistic behavior will increase, potentially leading to better pain killing effects, effective immunomodulation, control of inflammation, and (neo) angiogenesis, ultimately contributing to functionally restored body movement patterns.
Collapse
Affiliation(s)
- Peter A. Everts
- Education & Research Division, Gulf Coast Biologics, Fort Myers, FL 33916, USA
- Correspondence: ; Tel.: +1-239-961-6457
| | - Timothy Mazzola
- Breakthrough Regenerative Orthopedics, Boulder, CO 80305, USA
| | - Kenneth Mautner
- Department of Physical Medicine and Rehabilitation, Emory University, Atlanta, GA 30329, USA
| | - Pietro S. Randelli
- Instituto Orthopedico Gaetano Pini, Milan University, 20122 Milan, Italy
| | | |
Collapse
|