1
|
Zhang W, Bai Y, Hao L, Zhao Y, Zhang L, Ding W, Qi Y, Xu Q. One-carbon metabolism supports S-adenosylmethionine and m6A methylation to control the osteogenesis of bone marrow stem cells and bone formation. J Bone Miner Res 2024; 39:1356-1370. [PMID: 39126376 DOI: 10.1093/jbmr/zjae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/25/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The skeleton is a metabolically active organ undergoing continuous remodeling initiated by bone marrow stem cells (BMSCs). Recent research has demonstrated that BMSCs adapt the metabolic pathways to drive the osteogenic differentiation and bone formation, but the mechanism involved remains largely elusive. Here, using a comprehensive targeted metabolome and transcriptome profiling, we revealed that one-carbon metabolism was promoted following osteogenic induction of BMSCs. Methotrexate (MTX), an inhibitor of one-carbon metabolism that blocks S-adenosylmethionine (SAM) generation, led to decreased N6-methyladenosine (m6A) methylation level and inhibited osteogenic capacity. Increasing intracellular SAM generation through betaine addition rescued the suppressed m6A content and osteogenesis in MTX-treated cells. Using S-adenosylhomocysteine (SAH) to inhibit the m6A level, the osteogenic activity of BMSCs was consequently impeded. We also demonstrated that the pro-osteogenic effect of m6A methylation mediated by one-carbon metabolism could be attributed to HIF-1α and glycolysis pathway. This was supported by the findings that dimethyloxalyl glycine rescued the osteogenic potential in MTX-treated and SAH-treated cells by upregulating HIF-1α and key glycolytic enzymes expression. Importantly, betaine supplementation attenuated MTX-induced m6A methylation decrease and bone loss via promoting the abundance of SAM in rat. Collectively, these results revealed that one-carbon metabolite SAM was a potential promoter in BMSC osteogenesis via the augmentation of m6A methylation, and the cross talk between metabolic reprogramming, epigenetic modification, and transcriptional regulation of BMSCs might provide strategies for bone regeneration.
Collapse
Affiliation(s)
- Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lili Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lujin Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenqian Ding
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yipin Qi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
2
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
3
|
Bahbahani H, Alfoudari A, Al-Ateeqi A, Al Abri M, Almathen F. Positive selection footprints and haplotype distribution in the genome of dromedary camels. Animal 2024; 18:101098. [PMID: 38377812 DOI: 10.1016/j.animal.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Dromedary camels are a domestic species characterized by various adaptive traits. Limited efforts have been employed toward identifying genetic regions and haplotypes under selection that might be related to such adaptations. These genetic elements are considered valuable sources that should be conserved to maintain the dromedaries' adaptability. Here, we have analyzed whole genome sequences of 40 dromedary camels from different Arabian Peninsula populations to assess their genetic relationship and define regions with signatures of selection. Genetic distinction based on geography was observed, classifying the populations into four groups: (1) North and Central, (2) West, (3) Southwest, and (4) Southeast, with substantial levels of genetic admixture. Using the de-correlated composite of multiple signal approach, which combines four intra-population analyses (Tajima's D index, nucleotide diversity, integrated haplotype score, and number of segregating sites by length), a total of 36 candidate regions harboring 87 genes were identified to be under positive selection. These regions overlapped with 185 haplotype blocks encompassing 1 340 haplotypes, of which 30 (∼2%) were found to be approaching fixation. The defined candidate genes are associated with different biological processes related to the dromedaries' adaptive physiologies, including neurological pathways, musculoskeletal development, fertility, fat distribution, immunity, visual development, and kidney physiology. The results of this study highlight opportunities for further investigations at the whole-genome level to enhance our understanding of the evolutionary pressures shaping the dromedary genome.
Collapse
Affiliation(s)
- H Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait.
| | - A Alfoudari
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait
| | - A Al-Ateeqi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - M Al Abri
- Department of Animal and Veterinary Sciences, Sultan Qaboos University, Muscat, Oman
| | - F Almathen
- Department of Public Health, King Faisal University, 400 Al-Ahsa, Kingdom of Saudi Arabia; Camel Research Center, King Faisal University, 400 Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
5
|
Radwan SM, Abdel-Latif GA, Abbas SS, Elmongy NF, Wasfey EF. The beneficial effects of l-carnitine and infliximab in methotrexate-induced hepatotoxicity: Emphasis on Notch1/Hes-1 signaling. Arch Pharm (Weinheim) 2023; 356:e2300312. [PMID: 37625018 DOI: 10.1002/ardp.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Methotrexate (MTX)-induced hepatotoxicity is a serious adverse effect that may limit its use. Therefore, eligible drugs to ameliorate MTX-induced hepatotoxicity are required. l-Carnitine (LC) is a natural molecule with beneficial metabolic effects and infliximab (INF) is an anti-inflammatory monoclonal antibody against tumor necrosis factor-alpha (TNF-α). Recently, Notch1/Hes-1 signaling was found to play a key role in the pathogenesis of liver injury. However, its role in MTX-induced hepatotoxicity is unclear. This study aimed to evaluate the modulatory effects of LC or INF on MTX-induced hepatotoxicity and to explore the underlying mechanism with emphasis on the Notch1/Hes-1 signaling pathway. Sixty rats were randomized into six groups (n = 10): (1) control (saline); (2) MTX (20 mg/kg MTX, intraperitoneal [ip], once); (3) LC group (500 mg/kg ip, 5 days); (4) INF (7 mg/kg INF ip, once); (5) MTX+LC (20 mg/kg ip, once, 500 mg/kg ip, 5 days, respectively); (6) MTX+INF (20 mg/kg ip, once, 7 mg/kg INF ip, once, respectively). Oxidative stress, inflammatory markers, and Notch1/Hes-1 were investigated. MTX induced the expression of Notch1 and Hes-1 proteins and increased the levels of TNF-α, interleukin (IL)-6, and IL-1β in the liver. Cotreatment with LC or INF showed apparent antioxidant and anti-inflammatory effects. Interestingly, the downregulation of Notch1 and Hes-1 expression was more prominent in LC cotreatment as compared with INF. In conclusion, LC or INF attenuates MTX-induced hepatotoxicity through modulation of Notch1/Hes-1 signaling. The LC ameliorative effect against MTX-induced hepatotoxicity is significantly better than that of INF. Therefore, LC cotreatment may present a safe and therapeutically effective therapy in alleviating MTX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghada A Abdel-Latif
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Noura F Elmongy
- Physiology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Peng BQ, Wu J, Tian S, Qu XQ, Liang XY, Feng JH, Chen YL, She RL, Ma CY, Song JY, Li ZX, Jiang ZY, Wu KN, Kong LQ. Effect of chemotherapy and different chemotherapy regimens on bone health among Chinese breast cancer women in different menstrual status: a self-control study. Support Care Cancer 2023; 31:540. [PMID: 37642751 DOI: 10.1007/s00520-023-07960-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Although the therapy-related bone loss attracts increasing attention nowadays, the differences in chemotherapy-induced bone loss and bone metabolism indexes change among breast cancer (BC) women with different menstrual statuses or chemotherapy regimens are unknown. The aim of the study is to explore the effects of different regimens of chemotherapy on bone health. METHOD The self-control study enrolled 118 initially diagnosed BC women without distant metastasis who underwent dual-energy X-ray absorptiometry (DXA) bone mineral density (BMD) screening and (or) bone metabolism index monitoring during chemotherapy at Chongqing Breast Cancer Center. Mann-Whitney U test, Cochran's Q test, and Wilcoxon sign rank test were performed. RESULTS After chemotherapy, the BMD in the lumbar 1-4 and whole lumbar statistically decreased (- 1.8%/per 6 months), leading to a significantly increased proportion of osteoporosis (27.1% vs. 20.5%, P < 0.05), which were mainly seen in the premenopausal group (- 7.0%/per 6 months). Of the chemotherapeutic regimens of EC (epirubicin + cyclophosphamide), TC (docetaxel + cyclophosphamide), TEC (docetaxel + epirubicin + cyclophosphamide), and EC-T(H) [epirubicin + cyclophosphamide-docetaxel and/or trastuzumab], EC regimen had the least adverse impact on BMD, while the EC-TH regimen reduced BMD most (P < 0.05) inspite of the non-statistical difference between EC-T regimen, which was mainly seen in the postmenopausal group. Chemotherapy-induced amenorrhea (estradiol 94 pg/ml vs, 22 pg/ml; FSH 9.33 mIU/ml vs. 61.27 mIU/ml) was proved in premenopausal subgroup (P < 0.001). Except the postmenopausal population with calcium/VitD supplement, the albumin-adjusted calcium increased significantly (2.21 mmol/l vs. 2.33 mmol/l, P < 0.05) after chemotherapy. In postmenopausal group with calcium/VitD supplement, β-CTX decreased significantly (0.56 ng/ml vs. 0.39 ng/ml, P < 0.05) and BMD were not affected by chemotherapy (P > 0. 05). In premenopausal group with calcium/VitD supplement, PTH decreased significantly (52.90 pg/ml vs. 28.80 pg/ml, P = 0. 008) and hip BMD increased after chemotherapy (0.845 g/m2 vs. 0.952 g/m2, P = 0. 006). As for both postmenopausal and premenopausal group without calcium/VitD supplement, there was a significant decrease in bone mass in hip and lumbar vertebrae after chemotherapy (0.831 g/m2 vs. 0.776 g/m2; 0.895 g/m2 vs. 0.870 g/m2, P < 0.05). CONCLUSION Chemotherapy might induce lumbar vertebrae BMD loss and spine osteoporosis with regimen differences among Chinese BC patients. Calcium/VitD supplementation could improve bone turnover markers, bone metabolism indicators, and bone mineral density. Early interventions on bone health are needed for BC patients during chemotherapy.
Collapse
Affiliation(s)
- Bai-Qing Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Juan Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shen Tian
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiu-Quan Qu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xin-Yu Liang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun-Han Feng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Ling Chen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui-Ling She
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chen-Yu Ma
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing-Yu Song
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao-Xing Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhi-Yu Jiang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kai-Nan Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ling-Quan Kong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Wu Q, Chen X, Qiao C, Cao X, Du Q, Yuan Y, Zuo Y, Miao Y, Zheng Z, Zhang T, Zang L, Yang X, Shi W, Xie Z, Xu Y, Wu D, Wen C, Zheng H. Methotrexate and Triptolide regulate Notch signaling pathway by targeting the Nedd4-Numb axis. Int Immunopharmacol 2023; 114:109595. [PMID: 36700774 DOI: 10.1016/j.intimp.2022.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Methotrexate (MTX) is used to treat rheumatoid arthritis, acute leukemia, and psoriasis. MTX can cause certain side effects, such as myelosuppression, while the exact mechanism of myelosuppression caused by MTX is unknown. Notch signaling pathway has been considered to be essential to regulate hematopoietic stem cell (HSC) regeneration and homeostasis, thus contributing to bone marrow hematopoiesis. However, whether MTX affects Notch signaling remains unexplored. Here, our study provides evidence that MTX strongly suppresses the Notch signaling pathway. We found that MTX inhibited the interaction between Nedd4 with Numb, thus restricting K48-linked polyubiquitination of Numb and stabilizing Numb proteins. This in turn inhibited the Notch signaling pathway by reducing Notch1 protein levels. Interestingly, we found that a monomeric drug, Triptolide, is capable of alleviating the inhibitory effect of MTX on Notch signaling pathway. This study promotes our understanding of MTX-mediated regulation of Notch signaling and could provide ideas to alleviate MTX-induced myelosuppression.
Collapse
Affiliation(s)
- Qiuyu Wu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Caixia Qiao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xinhua Cao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Du
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhijin Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tingting Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lichao Zang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Xinyu Yang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Zhijun Xie
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
8
|
Therapeutic Targeting Notch2 Protects Bone Micro-Vasculatures from Methotrexate Chemotherapy-Induced Adverse Effects in Rats. Cells 2022; 11:cells11152382. [PMID: 35954226 PMCID: PMC9367713 DOI: 10.3390/cells11152382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Intensive cancer chemotherapy is well known to cause bone vasculature disfunction and damage, but the mechanism is poorly understood and there is a lack of treatment. Using a rat model of methotrexate (MTX) chemotherapy (five once-daily dosses at 0.75 mg/kg), this study investigated the roles of the Notch2 signalling pathway in MTX chemotherapy-induced bone micro-vasculature impairment. Gene expression, histological and micro-computed tomography (micro-CT) analyses revealed that MTX-induced micro-vasculature dilation and regression is associated with the induction of Notch2 activity in endothelial cells and increased production of inflammatory cytokine tumour necrosis factor alpha (TNFα) from osteoblasts (bone forming cells) and bone marrow cells. Blockade of Notch2 by a neutralising antibody ameliorated MTX adverse effects on bone micro-vasculature, both directly by supressing Notch2 signalling in endothelial cells and indirectly via reducing TNFα production. Furthermore, in vitro studies using rat bone marrow-derived endothelial cell revealed that MTX treatment induces Notch2/Hey1 pathway and negatively affects their ability in migration and tube formation, and Notch2 blockade can partially protect endothelial cell functions from MTX damage.
Collapse
|