1
|
Chernozem PV, Romashchenko AV, Solovieva OI, Ibraeva AZ, Nosov G, Koptsev DA, Lisitsyn SA, Surmeneva MA, Wagner DV, Gerasimov EY, Kazantsev SO, Lozhkomoev AS, Sukhorukov GB, Surmenev RA, Chernozem RV. The Effect of Various Surface Functionalizations of Core-Shell Nanoactuators on Magnetoelectrically Driven Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21614-21629. [PMID: 40162916 DOI: 10.1021/acsami.4c21337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Magnetoelectric (ME) nanoparticles (NPs) exhibit strong coupling between magnetic and electric properties, enabling wireless control of biological processes through electromagnetic stimulation, which paves the way for diverse biomedical applications. However, the surface functionalization of ME NPs and its impact on their structure, physical properties, and biological response remain largely unexplored. In this study, biocompatible citric acid (CA) and pectin (PEC) were employed to functionalize quasi-spherical ME core-shell NPs comprising a magnetic spinel MnFe2O4 core (∼23 nm) and a ferroelectric perovskite Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) shell (∼5 nm), synthesized using microwave-assisted hydrothermal processing. The surface functionalization led to the formation of covalent bonds between CA and metal ions of NPs via chelation. The surface functionalization with PEC increased ζ-potential values of ME NPs up to -46.2 ± 0.6 mV compared to CA (25.3 ± 1.0 mV). Both MFO@BCZT NPs with CA and PEC exhibited low coercivity values (69 ± 5 and 29 ± 2 Oe, respectively) with a pronounced specific saturation magnetization (6.1 ± 0.2 and 5.2 ± 0.2 emu/g, respectively). No effect of the BCZT shell with subsequent CA (746 ± 22 Oe) and PEC (754 ± 23 Oe) surface functionalizations on the anisotropy field of ME NPs was observed compared to the pristine MFO cores (754 ± 23 Oe). Both CA-/PEC-functionalized MFO@BCZT NPs exhibited ferroelectric behavior with robust piezoresponse (9.95 ± 1.36 and 10.24 ± 2.03 pm/V, respectively) and high ME response (81 × 104 and 80 × 104 mV·cm-1·Oe-1, respectively), comparable to the most frequently studied Co-based analogs. In vitro assays demonstrated the ability of the developed ME NPs to control calcium flux, which enables bidirectional regulation of cell proliferation. This work advances the development of efficient and biocompatible ME NPs with promising applications in the noninvasive and targeted stimulation of cell behavior.
Collapse
Affiliation(s)
| | - Alexander V Romashchenko
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- The Federal Research Center Institute of Cytology and Genetic, SB RAS, Novosibirsk 630090, Russia
- Life Improvement by Future Technology Center LLC (LIFT), Moscow 121205, Russia
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow 121205, Russia
| | - Olga I Solovieva
- The Federal Research Center Institute of Cytology and Genetic, SB RAS, Novosibirsk 630090, Russia
| | - Azhar Zh Ibraeva
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- The Federal Research Center Institute of Cytology and Genetic, SB RAS, Novosibirsk 630090, Russia
| | - Georgy Nosov
- Life Improvement by Future Technology Center LLC (LIFT), Moscow 121205, Russia
| | - Danila A Koptsev
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Sergey A Lisitsyn
- Life Improvement by Future Technology Center LLC (LIFT), Moscow 121205, Russia
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow 121205, Russia
| | - Maria A Surmeneva
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Dmitry V Wagner
- National Research Tomsk State University, Tomsk 634050, Russia
| | | | - Sergey O Kazantsev
- Institute of Strength Physics and Materials Science, SB RAS, Tomsk 634055, Russia
| | | | - Gleb B Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow 121205, Russia
| | - Roman A Surmenev
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Roman V Chernozem
- National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| |
Collapse
|
2
|
Kämmerer PW, Engel N, Bader R, Engel V, Frerich B, Heimes D, Kröger J, Lembcke L, Plocksties F, Raben H, van Rienen U, Springer A, Timmermann D, Zimmermann J, Dau M. Safety and preliminary efficacy of an electrically stimulated implant for mandibular bone regeneration: a pilot study in a large animal model. Clin Oral Investig 2025; 29:226. [PMID: 40192829 PMCID: PMC11976354 DOI: 10.1007/s00784-025-06303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
OBJECTIVES Large mandibular defects present challenges for bone regeneration. This pilot study evaluates the safety and preliminary efficacy of direct electrical stimulation (ES) on tissue healing in a preclinical model, testing whether ES can enhance bone formation in critical-size mandibular defects. MATERIALS AND METHODS Six adult mini pigs with critical-size mandibular defects were used in a split-mouth design. The test group (n = 6) received 0.5 V AC/20 Hz ES for 3 × 45 min daily over three weeks, while the control group (n = 6) had no stimulation. Safety, early bone growth, and soft tissue effects were assessed at three locations: S1 (cancellous bone interface), S2 (middle of the defect), and S3 (pristine dense bone). RESULTS The ES group showed no adverse effects, confirming implant safety. The ES group exhibited significantly higher bone formation, particularly in S2 and S3. Enhanced vascularization and immune response, in terms of increased mast cells, were also observed in S2. CONCLUSIONS The implant device with ES is safe and promotes bone formation and vascularization in select sub-regions (S2 and S3). However, ES alone may not suffice for complete bone regeneration in critical-sized defects, and further optimization is needed. CLINICAL RELEVANCE This study demonstrates the potential of ES to improve bone healing in large mandibular defects, offering insights for clinical use in maxillofacial reconstruction.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| | - Nadja Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057, Rostock, Germany
| | - Vivien Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Bernhard Frerich
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
| | - Diana Heimes
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Justin Kröger
- Institute of Chemistry, Universität Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| | - Laura Lembcke
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Albert- Einstein-Str. 26, 18119, Rostock, Germany
| | - Hendrikje Raben
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, University Medical Center Rostock, Strempelstraße 14, 18057, Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Albert- Einstein-Str. 26, 18119, Rostock, Germany
| | - Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059, Rostock, Germany
| | - Michael Dau
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
3
|
Zhu J, Li M, Yang S, Zou Y, Lv Y. Multifunctional electrospinning periosteum: Development status and prospect. J Biomater Appl 2025; 39:996-1013. [PMID: 39797782 DOI: 10.1177/08853282251315186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively. This review explores the construction strategies for functionalized electrospun periosteum from the following perspectives: ⅰ) bioactive factor modification (bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) etc.), ⅱ) inorganic compound modification, ⅲ) drug modification, ⅳ) artificial periosteum in response to physical stimuli. Furthermore, the construction of artificial periosteum through electrospinning, in conjunction with other strategies, is also analyzed. Finally, the current challenges and prospects for the development of electrospinning periosteum are also discussed.
Collapse
Affiliation(s)
- Jinli Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Meifeng Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Shuoshuo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, P.R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| |
Collapse
|
4
|
Mao K, Yue M, Ma H, Li Z, Liu Y. Electro- and Magneto-Active Biomaterials for Diabetic Tissue Repair: Advantages and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501817. [PMID: 40159915 DOI: 10.1002/adma.202501817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Indexed: 04/02/2025]
Abstract
The diabetic tissue repair process is frequently hindered by persistent inflammation, infection risks, and a compromised tissue microenvironment, which lead to delayed wound healing and significantly impact the quality of life for diabetic patients. Electromagnetic biomaterials offer a promising solution by enabling the intelligent detection of diabetic wounds through electric and magnetic effects, while simultaneously improving the pathological microenvironment by reducing oxidative stress, modulating immune responses, and exhibiting antibacterial action. Additionally, these materials inherently promote tissue regeneration by regulating cellular behavior and facilitating vascular and neural repair. Compared to traditional biomaterials, electromagnetic biomaterials provide advantages such as noninvasiveness, deep tissue penetration, intelligent responsiveness, and multi-stimuli synergy, demonstrating significant potential to overcome the challenges of diabetic tissue repair. This review comprehensively examines the superiority of electromagnetic biomaterials in diabetic tissue repair, elucidates the underlying biological mechanisms, and discusses specific design strategies and applications tailored to the pathological characteristics of diabetic wounds, with a focus on skin wound healing and bone defect repair. By addressing current limitations and pursuing multi-faceted strategies, electromagnetic biomaterials hold significant potential to improve clinical outcomes and enhance the quality of life for diabetic patients.
Collapse
Affiliation(s)
- Kai Mao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Huiping Ma
- Department of Stomatology, Zhengzhou Shuqing Medical College, 6 Gongming Road, Erqi District, Zhengzhou, 450064, P. R. China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
5
|
Sun Q, Li CH, Liu QS, Zhang YB, Hu BS, Feng Q, Lang Y. Research status of biomaterials based on physical signals for bone injury repair. Regen Ther 2025; 28:544-557. [PMID: 40027992 PMCID: PMC11872413 DOI: 10.1016/j.reth.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Bone defects repair continues to be a significant challenge facing the world. Biological scaffolds, bioactive molecules, and cells are the three major elements of bone tissue engineering, which have been widely used in bone regeneration therapy, especially with the rise of bioactive molecules in recent years. According to their physical properties, they can be divided into force, magnetic field (MF), electric field (EF), ultrasonic wave, light, heat, etc. However, the transmission of bioactive molecules has obvious shortcomings that hinder the development of the tissue-rearing process. This paper reviews the mechanism of physical signal induction in bone tissue engineering in recent years. It summarizes the application strategies of physical signal in bone tissue engineering, including biomaterial designs, physical signal loading strategies and related pathways. Finally, the ongoing challenges and prospects for the future are discussed.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Chao-Hua Li
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Qi-Shun Liu
- Department of Orthopedics, Zhejiang Medical & Health Group Hangzhou Hospital, Hangzhou, 310015, China
| | - Yuan-Bin Zhang
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Bai-Song Hu
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Qi Feng
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Yong Lang
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| |
Collapse
|
6
|
Ngau SM, Cheah KH, Wong VL, Khiew PS, Lim SS. 3D-printed poly(ethylene) glycol diacrylate (PEGDA)-chitosan-nanohydroxyapatite scaffolds: Structural characterization and cellular response. Int J Biol Macromol 2025; 296:139652. [PMID: 39793825 DOI: 10.1016/j.ijbiomac.2025.139652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds. nHA, synthesized via wet chemical precipitation, had a particle size of 28 nm and exhibited low crystallinity, as confirmed by X-ray diffraction. PEGDA-chitosan-nHA scaffolds underwent post-curing and 70 % ethanol leaching treatment. The presence of chitosan and nHA in the composite scaffolds was confirmed by their characteristic peaks. TGA analyses further verified nHA content correlating to the intended amount. The scaffolds featured interconnected pores ranging from 2891 to 3382 μm and porosities between 35 and 56 %. The swelling percentage and compressive modulus were reported at ~71-93 % and 0.52-1.18 MPa, respectively. Notably, PEGDA-chitosan-nHA scaffolds showed enhanced in vitro efficacy than pure PEGDA scaffolds, by promoting better MG63 cell adhesion (p < 0.05), higher proliferation and alkaline phosphatase (ALP) activity, particularly in scaffolds with 20 wt% chitosan across all incubation periods in cell proliferation and early osteoblast differentiation studies. These findings suggest that PEGDA-chitosan-nHA scaffolds have promising potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Shannen Marcus Ngau
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kean How Cheah
- School of Aerospace, Faculty of Science and Engineering, University of Nottingham Ningbo China, China
| | - Voon Loong Wong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900 Sepang, Malaysia
| | - Poi Sim Khiew
- Centre of Nanotechnology and Advanced Materials, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
7
|
Dogadina E, Rodriguez RD, Fatkullin M, Lipovka A, Kozelskaya A, Averkiev A, Plotnikov E, Jia X, Liu C, Chen JJ, Cheng C, Qiu L, Tverdokhlebov S, Sheremet E. Integration of Graphene into Calcium Phosphate Coating for Implant Electronics. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39969226 DOI: 10.1021/acsami.4c21046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Bone injuries remain a significant challenge, driving the development of new materials and technologies to enhance healing. This study presents a novel approach for incorporating graphene into calcium phosphate (CaP) coatings on titanium alloy (Ti) substrates, with the aim of creating a new generation of materials for bone implant electronics. The stability of the composite coating under physiological conditions, long-term electrical and mechanical durability, and biocompatibility were systematically investigated. We integrated graphene into the CaP coating through the laser processing of diazonium-functionalized graphene films applied to the surface of CaP-coated Ti. The laser treatment induced several processes, including the removal of aryl groups, the formation of conductive pathways, and chemical bonding with the CaP film. As a result, the graphene-CaP nanocomposite demonstrated excellent mechanical durability, withstanding a 2 h sand abrasion test. It also exhibited excellent biocompatibility, as shown by the proliferation of human fibroblast cells for 7 days. The electrical properties remained stable under physiological conditions for 12 weeks, and the material maintained electrochemical stability after 1 million pulse cycles. Furthermore, it withstood the stress of 100,000 bending cycles without compromising electrical performance. This work highlights the versatility of the biocompatible graphene composite and its potential for a range of applications including free-form electronic circuits, electrodes, bending sensors, and electrothermal heaters.
Collapse
Affiliation(s)
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Maxim Fatkullin
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Anna Lipovka
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Anna Kozelskaya
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Andrey Averkiev
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | | | - Xin Jia
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, U.K
| | - Jin-Ju Chen
- The School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | | |
Collapse
|
8
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Bordett R, Danazumi KB, Wijekoon S, Garcia CJ, Abdulmalik S, Kumbar SG. Advancements in stimulation therapies for peripheral nerve regeneration. Biomed Mater 2024; 19:052008. [PMID: 39025114 PMCID: PMC11425301 DOI: 10.1088/1748-605x/ad651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Soft-tissue injuries affecting muscles, nerves, vasculature, tendons, and ligaments often diminish the quality of life due to pain, loss of function, and financial burdens. Both natural healing and surgical interventions can result in scarring, which potentially may impede functional recovery and lead to persistent pain. Scar tissue, characterized by a highly disorganized fibrotic extracellular matrix, may serve as a physical barrier to regeneration and drug delivery. While approaches such as drugs, biomaterials, cells, external stimulation, and other physical forces show promise in mitigating scarring and promoting regenerative healing, their implementation remains limited and challenging. Ultrasound, laser, electrical, and magnetic forms of external stimulation have been utilized to promote soft tissue as well as neural tissue regeneration. After stimulation, neural tissues experience increased proliferation of Schwann cells, secretion of neurotropic factors, production of myelin, and growth of vasculature, all aimed at supporting axon regeneration and innervation. Yet, the outcomes of healing vary depending on the pathophysiology of the damaged nerve, the timing of stimulation following injury, and the specific parameters of stimulation employed. Increased treatment intensity and duration have been noted to hinder the healing process by inducing tissue damage. These stimulation modalities, either alone or in combination with nerve guidance conduits and scaffolds, have been demonstrated to promote healing. However, the literature currently lacks a detailed understanding of the stimulation parameters used for nerve healing applications. In this article, we aim to address this gap by summarizing existing reports and providing an overview of stimulation parameters alongside their associated healing outcomes.
Collapse
Affiliation(s)
- Rosalie Bordett
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Khadija B Danazumi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Suranji Wijekoon
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Christopher J Garcia
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
10
|
Sun J, Xie W, Wu Y, Li Z, Li Y. Accelerated Bone Healing via Electrical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404190. [PMID: 39115981 DOI: 10.1002/advs.202404190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Piezoelectric effect produces an electrical signal when stress is applied to the bone. When the integrity of the bone is destroyed, the biopotential within the defect site is reduced and several physiological responses are initiated to facilitate healing. During the healing of the bone defect, the bioelectric potential returns to normal levels. Treatment of fractures that exceed innate regenerative capacity or exhibit delayed healing requires surgical intervention for bone reconstruction. For bone defects that cannot heal on their own, exogenous electric fields are used to assist in treatment. This paper reviews the effects of exogenous electrical stimulation on bone healing, including osteogenesis, angiogenesis, reduction in inflammation and effects on the peripheral nervous system. This paper also reviews novel electrical stimulation methods, such as small power supplies and nanogenerators, that have emerged in recent years. Finally, the challenges and future trends of using electrical stimulation therapy for accelerating bone healing are discussed.
Collapse
Affiliation(s)
- Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, 430056, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
11
|
Bianconi S, Leppik L, Oppermann E, Marzi I, Henrich D. Direct Current Electrical Stimulation Shifts THP-1-Derived Macrophage Polarization towards Pro-Regenerative M2 Phenotype. Int J Mol Sci 2024; 25:7272. [PMID: 39000377 PMCID: PMC11242703 DOI: 10.3390/ijms25137272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
A macrophage shift from the M1 to the M2 phenotype is relevant for promoting tissue repair and regeneration. In a previous in vivo study, we found that direct current (DC) electrical stimulation (EStim) increased the proportion of M2 macrophages in healing tissues and directed the balance of the injury response away from healing/scarring towards regeneration. These observations led us to hypothesize that DC EStim regulates macrophage polarization towards an M2 phenotype. THP-1-derived M0, M1 (IFN-γ and LPS), and M2 (IL-4 and IL-13) macrophages were exposed (or not: control group) to 100 mV/mm of DC EStim, 1 h/day for three days. Macrophage polarization was assessed through gene and surface marker expressions and cytokine secretion profiles. Following DC EStim treatment, M0 cells exhibited an upregulation of M2 marker genes IL10, CD163, and PPARG. In M1 cells, DC EStim upregulated the gene expressions of M2 markers IL10, TGM2, and CD206 and downregulated M1 marker gene CD86. EStim treatment also reduced the surface expression of CD86 and secretion of pro-inflammatory cytokines IL-1β and IL-6. Our results suggest that DC EStim differentially exerts pro-M2 effects depending on the macrophage phenotype: it upregulates typical M2 genes in M0 and M1 cells while inhibiting M1 marker CD86 at the nuclear and protein levels and the secretion of pro-inflammatory interleukins in M1 cells. Conversely, M2 cells appear to be less responsive to the EStim treatment employed in this study.
Collapse
Affiliation(s)
- Santiago Bianconi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Luo S, Zhang C, Xiong W, Song Y, Wang Q, Zhang H, Guo S, Yang S, Liu H. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat 2024; 47:191-206. [PMID: 39040489 PMCID: PMC11261049 DOI: 10.1016/j.jot.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
The regenerative capacity of bone is indispensable for growth, given that accidental injury is almost inevitable. Bone regenerative capacity is relevant for the aging population globally and for the repair of large bone defects after osteotomy (e.g., following removal of malignant bone tumours). Among the many therapeutic modalities proposed to bone regeneration, electrical stimulation has attracted significant attention owing to its economic convenience and exceptional curative effects, and various electroactive biomaterials have emerged. This review summarizes the current knowledge and progress regarding electrical stimulation strategies for improving bone repair. Such strategies range from traditional methods of delivering electrical stimulation via electroconductive materials using external power sources to self-powered biomaterials, such as piezoelectric materials and nanogenerators. Electrical stimulation and osteogenesis are related via bone piezoelectricity. This review examines cell behaviour and the potential mechanisms of electrostimulation via electroactive biomaterials in bone healing, aiming to provide new insights regarding the mechanisms of bone regeneration using electroactive biomaterials. The translational potential of this article This review examines the roles of electroactive biomaterials in rehabilitating the electrical microenvironment to facilitate bone regeneration, addressing current progress in electrical biomaterials and the mechanisms whereby electrical cues mediate bone regeneration. Interactions between osteogenesis-related cells and electroactive biomaterials are summarized, leading to proposals regarding the use of electrical stimulation-based therapies to accelerate bone healing.
Collapse
Affiliation(s)
- Songyang Luo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi Medical University, Shihezi, 832000, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Hangzhou Zhang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang, 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Huanye Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| |
Collapse
|
13
|
Brooks JR, Heiman TC, Lorenzen SR, Mungloo I, Mirfendereski S, Park JS, Yang R. Transepithelial Electrical Impedance Increase Following Porous Substrate Electroporation Enables Label-Free Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310221. [PMID: 38396158 PMCID: PMC11186731 DOI: 10.1002/smll.202310221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Porous substrate electroporation (PSEP) is a promising new method for intracellular delivery, yet fundamentals of PSEP are not well understood, especially the intermediate processes leading to delivery. PSEP is an electrical method, yet the relationship between PSEP and electrical impedance remains underexplored. In this study, a device capable of measuring impedance and performing PSEP is developed and the changes in transepithelial electrical impedance (TEEI) are monitored. These measurements show TEEI increases following PSEP, unlike other electroporation methods. The authors then demonstrate how cell culture conditions and electrical waveforms influence this response. More importantly, TEEI response features are correlated with viability and delivery efficiency, allowing prediction of outcomes without fluorescent cargo, imaging, or image processing. This label-free delivery also allows improved temporal resolution of transient processes following PSEP, which the authors expect will aid PSEP optimization for new cell types and cargos.
Collapse
Affiliation(s)
- Justin R. Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Tyler C. Heiman
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sawyer R. Lorenzen
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ikhlaas Mungloo
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Siamak Mirfendereski
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jae Sung Park
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
14
|
Huynh QS, Holsinger RMD. Development of a Cell Culture Chamber for Investigating the Therapeutic Effects of Electrical Stimulation on Neural Growth. Biomedicines 2024; 12:289. [PMID: 38397891 PMCID: PMC10886545 DOI: 10.3390/biomedicines12020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Natural electric fields exist throughout the body during development and following injury, and, as such, EFs have the potential to be utilized to guide cell growth and regeneration. Electrical stimulation (ES) can also affect gene expression and other cellular behaviors, including cell migration and proliferation. To investigate the effects of electric fields on cells in vitro, a sterile chamber that delivers electrical stimuli is required. Here, we describe the construction of an ES chamber through the modification of an existing lid of a 6-well cell culture plate. Using human SH-SY5Y neuroblastoma cells, we tested the biocompatibility of materials, such as Araldite®, Tefgel™ and superglue, that were used to secure and maintain platinum electrodes to the cell culture plate lid, and we validated the electrical properties of the constructed ES chamber by calculating the comparable electrical conductivities of phosphate-buffered saline (PBS) and cell culture media from voltage and current measurements obtained from the ES chamber. Various electrical signals and durations of stimulation were tested on SH-SY5Y cells. Although none of the signals caused significant cell death, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed that shorter stimulation times and lower currents minimized negative effects. This design can be easily replicated and can be used to further investigate the therapeutic effects of electrical stimulation on neural cells.
Collapse
Affiliation(s)
- Quy-Susan Huynh
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Bielfeldt M, Budde-Sagert K, Weis N, Buenning M, Staehlke S, Zimmermann J, Arbeiter N, Mobini S, González MU, Rebl H, Uhrmacher A, van Rienen U, Nebe B. Discrimination between the effects of pulsed electrical stimulation and electrochemically conditioned medium on human osteoblasts. J Biol Eng 2023; 17:71. [PMID: 37996914 PMCID: PMC10668359 DOI: 10.1186/s13036-023-00393-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Electrical stimulation is used for enhanced bone fracture healing. Electrochemical processes occur during the electrical stimulation at the electrodes and influence cellular reactions. Our approach aimed to distinguish between electrochemical and electric field effects on osteoblast-like MG-63 cells. We applied 20 Hz biphasic pulses via platinum electrodes for 2 h. The electrical stimulation of the cell culture medium and subsequent application to cells was compared to directly stimulated cells. The electric field distribution was predicted using a digital twin. RESULTS Cyclic voltammetry and electrochemical impedance spectroscopy revealed partial electrolysis at the electrodes, which was confirmed by increased concentrations of hydrogen peroxide in the medium. While both direct stimulation and AC-conditioned medium decreased cell adhesion and spreading, only the direct stimulation enhanced the intracellular calcium ions and reactive oxygen species. CONCLUSION The electrochemical by-product hydrogen peroxide is not the main contributor to the cellular effects of electrical stimulation. However, undesired effects like decreased adhesion are mediated through electrochemical products in stimulated medium. Detailed characterisation and monitoring of the stimulation set up and electrochemical reactions are necessary to find safe electrical stimulation protocols.
Collapse
Affiliation(s)
- Meike Bielfeldt
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany.
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051, Rostock, Germany
- Institute for Visual and Analytic Computing, University of Rostock, 18051, Rostock, Germany
| | - Nikolai Weis
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Maren Buenning
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Susanne Staehlke
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051, Rostock, Germany
| | - Nils Arbeiter
- Institute of General Electrical Engineering, University of Rostock, 18051, Rostock, Germany
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid, Spain
| | - María Ujué González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid, Spain
| | - Henrike Rebl
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Adelinde Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, 18051, Rostock, Germany
- Interdisciplinary Faculty, University of Rostock, 18051, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051, Rostock, Germany
- Interdisciplinary Faculty, University of Rostock, 18051, Rostock, Germany
| | - Barbara Nebe
- Institute for Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
- Interdisciplinary Faculty, University of Rostock, 18051, Rostock, Germany
| |
Collapse
|
16
|
Brooks JR, Heiman TC, Lorenzen SR, Mungloo I, Mirfendereski S, Park JS, Yang R. Transepithelial Electrical Impedance Increase Following Porous Substrate Electroporation Enables Label-Free Delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562630. [PMID: 37905105 PMCID: PMC10614851 DOI: 10.1101/2023.10.17.562630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Porous substrate electroporation (PSEP) is a promising new method for intracellular delivery, yet fundamentals of the PSEP delivery process are not well understood, partly because most PSEP studies rely solely on imaging for evaluating delivery. Although effective, imaging alone limits understanding of intermediate processes leading to delivery. PSEP is an electrical process, so electrical impedance measurements naturally complement imaging for PSEP characterization. In this study, we developed a device capable of measuring impedance and performing PSEP and we monitored changes in transepithelial electrical impedance (TEEI). Our measurements show TEEI increases following PSEP, unlike other electroporation methods. We then demonstrated how cell culture conditions and electrical waveforms influence this response. More importantly, we correlated TEEI response features with viability and delivery efficiency, allowing prediction of outcomes without fluorescent cargo, imaging, or image processing. This label-free delivery also allows improved temporal resolution of transient processes following PSEP, which we expect will aid PSEP optimization for new cell types and cargos.
Collapse
Affiliation(s)
- Justin R. Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Tyler C. Heiman
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sawyer R. Lorenzen
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ikhlaas Mungloo
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Siamak Mirfendereski
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jae Sung Park
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communications, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
17
|
Bianconi S, Oliveira KMC, Klein KL, Wolf J, Schaible A, Schröder K, Barker J, Marzi I, Leppik L, Henrich D. Pretreatment of Mesenchymal Stem Cells with Electrical Stimulation as a Strategy to Improve Bone Tissue Engineering Outcomes. Cells 2023; 12:2151. [PMID: 37681884 PMCID: PMC10487010 DOI: 10.3390/cells12172151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Electrical stimulation (EStim), whether used alone or in combination with bone tissue engineering (BTE) approaches, has been shown to promote bone healing. In our previous in vitro studies, mesenchymal stem cells (MSCs) were exposed to EStim and a sustained, long-lasting increase in osteogenic activity was observed. Based on these findings, we hypothesized that pretreating MSC with EStim, in 2D or 3D cultures, before using them to treat large bone defects would improve BTE treatments. Critical size femur defects were created in 120 Sprague-Dawley rats and treated with scaffold granules seeded with MSCs that were pre-exposed or not (control group) to EStim 1 h/day for 7 days in 2D (MSCs alone) or 3D culture (MSCs + scaffolds). Bone healing was assessed at 1, 4, and 8 weeks post-surgery. In all groups, the percentage of new bone increased, while fibrous tissue and CD68+ cell count decreased over time. However, these and other healing features, like mineral density, bending stiffness, the amount of new bone and cartilage, and the gene expression of osteogenic markers, did not significantly differ between groups. Based on these findings, it appears that the bone healing environment could counteract the long-term, pro-osteogenic effects of EStim seen in our in vitro studies. Thus, EStim seems to be more effective when administered directly and continuously at the defect site during bone healing, as indicated by our previous studies.
Collapse
Affiliation(s)
- Santiago Bianconi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Karla M. C. Oliveira
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Kari-Leticia Klein
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Jakob Wolf
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Alexander Schaible
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Katrin Schröder
- Vascular Research Centre, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - John Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany;
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Liudmila Leppik
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| |
Collapse
|
18
|
Synergistic Effect of Static Magnetic Fields and 3D-Printed Iron-Oxide-Nanoparticle-Containing Calcium Silicate/Poly-ε-Caprolactone Scaffolds for Bone Tissue Engineering. Cells 2022; 11:cells11243967. [PMID: 36552731 PMCID: PMC9776421 DOI: 10.3390/cells11243967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
In scaffold-regulated bone regeneration, most three-dimensional (3D)-printed scaffolds do not provide physical stimulation to stem cells. In this study, a magnetic scaffold was fabricated using fused deposition modeling with calcium silicate (CS), iron oxide nanoparticles (Fe3O4), and poly-ε-caprolactone (PCL) as the matrix for internal magnetic sources. A static magnetic field was used as an external magnetic source. It was observed that 5% Fe3O4 provided a favorable combination of compressive strength (9.6 ± 0.9 MPa) and degradation rate (21.6 ± 1.9% for four weeks). Furthermore, the Fe3O4-containing scaffold increased in vitro bioactivity and Wharton's jelly mesenchymal stem cells' (WJMSCs) adhesion. Moreover, it was shown that the Fe3O4-containing scaffold enhanced WJMSCs' proliferation, alkaline phosphatase activity, and the osteogenic-related proteins of the scaffold. Under the synergistic effect of the static magnetic field, the CS scaffold containing Fe3O4 can not only enhance cell activity but also stimulate the simultaneous secretion of collagen I and osteocalcin. Overall, our results demonstrated that Fe3O4-containing CS/PCL scaffolds could be fabricated three dimensionally and combined with a static magnetic field to affect cell behaviors, potentially increasing the likelihood of clinical applications for bone tissue engineering.
Collapse
|