1
|
Navarro-Perez J, Carobbio S. Adipose tissue-derived stem cells, in vivo and in vitro models for metabolic diseases. Biochem Pharmacol 2024; 222:116108. [PMID: 38438053 DOI: 10.1016/j.bcp.2024.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The primary role of adipose tissue stem cells (ADSCs) is to support the function and homeostasis of adipose tissue in physiological and pathophysiological conditions. However, when ADSCs become dysfunctional in diseases such as obesity and cancer, they become impaired, undergo signalling changes, and their epigenome is altered, which can have a dramatic effect on human health. In more recent years, the therapeutic potential of ADSCs in regenerative medicine, wound healing, and for treating conditions such as cancer and metabolic diseases has been extensively investigated with very promising results. ADSCs have also been used to generate two-dimensional (2D) and three-dimensional (3D) cellular and in vivo models to study adipose tissue biology and function as well as intracellular communication. Characterising the biology and function of ADSCs, how it is altered in health and disease, and its therapeutic potential and uses in cellular models is key for designing intervention strategies for complex metabolic diseases and cancer.
Collapse
|
2
|
Escudero M, Vaysse L, Eke G, Peyrou M, Villarroya F, Bonnel S, Jeanson Y, Boyer L, Vieu C, Chaput B, Yao X, Deschaseaux F, Parny M, Raymond‐Letron I, Dani C, Carrière A, Malaquin L, Casteilla L. Scalable Generation of Pre-Vascularized and Functional Human Beige Adipose Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301499. [PMID: 37731092 PMCID: PMC10625054 DOI: 10.1002/advs.202301499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Indexed: 09/22/2023]
Abstract
Obesity and type 2 diabetes are becoming a global sociobiomedical burden. Beige adipocytes are emerging as key inducible actors and putative relevant therapeutic targets for improving metabolic health. However, in vitro models of human beige adipose tissue are currently lacking and hinder research into this cell type and biotherapy development. Unlike traditional bottom-up engineering approaches that aim to generate building blocks, here a scalable system is proposed to generate pre-vascularized and functional human beige adipose tissue organoids using the human stromal vascular fraction of white adipose tissue as a source of adipose and endothelial progenitors. This engineered method uses a defined biomechanical and chemical environment using tumor growth factor β (TGFβ) pathway inhibition and specific gelatin methacryloyl (GelMA) embedding parameters to promote the self-organization of spheroids in GelMA hydrogel, facilitating beige adipogenesis and vascularization. The resulting vascularized organoids display key features of native beige adipose tissue including inducible Uncoupling Protein-1 (UCP1) expression, increased uncoupled mitochondrial respiration, and batokines secretion. The controlled assembly of spheroids allows to translate organoid morphogenesis to a macroscopic scale, generating vascularized centimeter-scale beige adipose micro-tissues. This approach represents a significant advancement in developing in vitro human beige adipose tissue models and facilitates broad applications ranging from basic research to biotherapies.
Collapse
Affiliation(s)
- Mélanie Escudero
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Laurence Vaysse
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Gozde Eke
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Marion Peyrou
- CIBER “Fisiopatologia de la Obesidad y Nutrición”, Department of Biochemistry and Molecular BiomedicineUniversity of BarcelonaMadrid28029Spain
| | - Francesc Villarroya
- CIBER “Fisiopatologia de la Obesidad y Nutrición”, Department of Biochemistry and Molecular BiomedicineUniversity of BarcelonaMadrid28029Spain
| | - Sophie Bonnel
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Yannick Jeanson
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Louisa Boyer
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Christophe Vieu
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Benoit Chaput
- Service de Chirurgie plastique, reconstructrice et esthétiqueCentre Hospitalier Universitaire RangueilToulouse31400France
| | - Xi Yao
- Faculté de MédecineUniversité Côte d'AzurINSERM, CNRS, iBVNice06103France
| | - Frédéric Deschaseaux
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Mélissa Parny
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
- LabHPEC, Histology and Pathology DepartmentUniversité de Toulouse, ENVTToulouse31076France
| | - Isabelle Raymond‐Letron
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
- LabHPEC, Histology and Pathology DepartmentUniversité de Toulouse, ENVTToulouse31076France
| | - Christian Dani
- Faculté de MédecineUniversité Côte d'AzurINSERM, CNRS, iBVNice06103France
| | - Audrey Carrière
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | | | - Louis Casteilla
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| |
Collapse
|