1
|
Seneschal J, Guyon M, Merhi R, Mazereeuw-Hautier J, Andreu N, Cazenave S, Ezzedine K, Passeron T, Boniface K. Combination of Baricitinib and Phototherapy in Adults With Active Vitiligo: A Randomized Clinical Trial. JAMA Dermatol 2025; 161:375-382. [PMID: 39841460 PMCID: PMC12004207 DOI: 10.1001/jamadermatol.2024.5737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/30/2024] [Indexed: 01/23/2025]
Abstract
Importance Vitiligo is a chronic autoimmune disorder leading to skin depigmentation and reduced quality of life (QOL). Patients with extensive and very active disease are the most difficult to treat. Objective To assess the efficacy and adverse events of baricitinib combined with narrowband UV-B in adults with severe, active, nonsegmental vitiligo. Design, Setting, and Participants This academic, multicenter, double-blind, noncomparative randomized clinical trial was conducted at 4 dermatology departments between July 2021 and April 2023 and included adult patients with extensive and active nonsegmental vitiligo. The study was designed to evaluate the effect of baricitinib plus narrowband UV-B based solely on the results from this experimental group. The placebo group was used as a calibration group. Data were analyzed from August to November 2023. Interventions Participants were randomized 3:1 to baricitinib, 4 mg per day, or placebo for 36 weeks alone for the first 12 weeks and then in combination with narrowband UV-B twice a week from weeks 12 to 36. Main Outcomes and Measures The primary outcome was mean percentage change in total Vitiligo Area Scoring Index (VASI) score from baseline to week 36 (baricitinib group). The prespecified aim of the study was to show that the reduction in the baricitinib plus narrowband UV-B was significantly greater than 42.9%, a repigmented surface threshold previously observed in patients treated with narrowband UV-B alone. Adverse events and secondary outcomes of change in disease activity and QOL were assessed. Post hoc analyses were additionally performed. Results Of 49 included patients, 35 (71%) were female, and the median (IQR) age was 49.9 (38.4-59.8) years. A total of 37 patients were randomized to the baricitinib group and 12 to the placebo group. The mean change in total VASI at week 36 was -44.8% (95% CI, -58.4% to -31.3%) for the baricitinib group and -9.2% (95% CI, -27.7% to 24.7%) for the placebo group. This was not significantly greater than the sufficient repigmented surface threshold of 42.9%. Post hoc analyses showed a significant difference at week 36 for total VASI score in the baricitinib plus narrowband UV-B group compared with placebo plus narrowband UV-B (-44.8% vs -9.2%, respectively; P = .02). There was a greater improvement in disease activity and QOL in the baricitinib group vs placebo group and no significant difference in the number of adverse events. Conclusions and Relevance This proof-of-concept randomized clinical trial confirmed the efficacy of baricitinib combined with narrowband UV-B in the treatment of patients with extensive and active vitiligo. Trial Registration ClinicalTrials.gov Identifier: NCT04822584.
Collapse
Affiliation(s)
- Julien Seneschal
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
- CNRS, Immuno ConcEpT, UMR 5164, University Bordeaux, Bordeaux, France
| | - Mathilde Guyon
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Ribal Merhi
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
- CNRS, Immuno ConcEpT, UMR 5164, University Bordeaux, Bordeaux, France
| | - Juliette Mazereeuw-Hautier
- CHU Toulouse, National Reference Center for Rare Skin Diseases, Department of Dermatology, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Nicolas Andreu
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Sarah Cazenave
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Khaled Ezzedine
- Department of Dermatology, AP-HP, Henri Mondor University Hospital, Université Paris-Est Créteil, Créteil, France
- Epidemiology in Dermatology and Evaluation of Therapeutics—EA 7379, Université Paris-Est Créteil, INSERM, Clinical Investigation Centre 1430, Créteil, France
| | - Thierry Passeron
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Department of Dermatology, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Université Côte d’Azur, Nice, France
| | - Katia Boniface
- CNRS, Immuno ConcEpT, UMR 5164, University Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Liu W, Zhang X, Chen X. Unraveling the causal associations between systemic cytokines and six inflammatory skin diseases. Cytokine 2025; 185:156810. [PMID: 39631262 DOI: 10.1016/j.cyto.2024.156810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Previous observational studies have reported that systemic cytokines are associated with the risk of inflammatory skin diseases, but their conclusions remain controversial. METHOD We conducted a two-sample Mendelian randomization analysis to assess the relationship between systemic cytokines and six inflammatory skin disorders (including alopecia areata (AA), acne, atopic dermatitis (AD), hidradenitis suppurativa (HS), psoriasis (PS) and vitiligo), based on datasets from EArly Genetics and Lifecourse Epidemiology (EAGLE) eczema consortium, acne GWAS conducted by Maris Teder Laving et al., IEU Open GWAS, and FinnGen database. Inverse-variance weighted (IVW) method was conducted in primary MR analysis, and supplemented by MR-Egger, weighted median, weighted mode, and MR-PRESSO. RESULTS By integrating the findings from both primary and sensitivity analyses, we identified ten systemic cytokines linked to the risk of six skin diseases using the IVW method. Briefly, four cytokines increased the risk of corresponding skin diseases: β-nerve growth factor (β-NGF) to AA (p = 0.005) and HS (p = 0.001), interleukin-8 (p = 0.014) to acne; interleukin-5 (p = 0.042) to AD; interleukin-13 (p = 0.049) to PS. In the meantime, seven cytokines could have protective effect on specific skin diseases: interleukin-9 (p = 0.040) and interleukin-2 receptor subunit alpha (IL-2ra) (p = 0.020) on AA; macrophage inflammatory protein (MIP)-1β (p = 0.020) on acne; monokine induced by IFN-γ (p = 0.006) on AD; interleukin-16 (p = 0.038), MIP-1β (p = 0.017) and IL-2ra (p = 0.020) on PS. CONCLUSIONS This study reveals 13 causal associations between systemic cytokines and 6 skin diseases, offering new perspectives on the prevention and management of widespread inflammatory skin disorders.
Collapse
Affiliation(s)
- Waner Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
3
|
Shao X, Chen T, Pan X, Chen S, Chen Y, Chen J. Biologic drugs induced vitiligo: case reports and review of literature. Front Immunol 2024; 15:1455050. [PMID: 39742272 PMCID: PMC11685107 DOI: 10.3389/fimmu.2024.1455050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
Biological drugs are extensively used to treat various inflammatory diseases, including psoriasis, atopic dermatitis (AD), and rheumatoid arthritis. While generally effective and safe, these therapies have been increasingly associated with secondary development of vitiligo, especially with anti-TNF α and anti-IL17 drugs. Dupilumab, an IL-4 receptor alpha antagonist used in moderate to severe AD, rarely induces vitiligo. This study reports two cases of new-onset vitiligo following dupilumab treatment for AD. The first case involves an 80-year-old male who developed vitiligo patches appeared on the chest, back, and lower limbs after 2 months of dupilumab therapy. Despite discontinuation of dupilumab, the vitiligo did not regress. The second case describes a 14-year-old female who experienced depigmentation on her forehead one month into dupilumab treatment, with partial improvement of vitiligo lesions over time despite continued therapy. This phenomenon may be due to dupilumab blocking type 2 inflammation, disrupting normal skin homeostasis, and exacerbating type 1 inflammation. These cases, supplemented with a literature review, highlight the potential for biologic drug-induced vitiligo and underscore the need for awareness of such adverse events in clinical practice. The mechanisms underlying this phenomenon likely involve disruption of the Th1/Th2/Th17 cytokine balance, suggesting that targeted therapies may inadvertently exacerbate type 1 inflammation, leading to vitiligo. With the rising use of biologics, clinicians should carefully consider the risk of vitiligo when prescribing these treatments.
Collapse
Affiliation(s)
| | | | | | - Shuang Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Liu K, Zhou L, Shi M, Cong T, Yang X, Zhou X, Cheng M, Ma C, Yao S, Ying P, Mu Z, Wu Y. JAK inhibitors in immune regulation and treatment of vitiligo. Cytokine Growth Factor Rev 2024; 80:87-96. [PMID: 39567266 DOI: 10.1016/j.cytogfr.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Vitiligo, a disorder marked by hypopigmentation, significantly impacts patients' quality of life and mental health. This condition results from the reduction or dysfunction of melanocytes, which are crucial for skin and hair pigmentation. Current treatments include glucocorticoids, immunosuppressants, phototherapy, vitamin D3 analogues, and surgical interventions. Recent research has revealed that hyperactivation of Janus kinase (JAK) and its downstream signaling pathways intensifies cytotoxic T cell activity and weakens melanocytes' defense against environmental stressors. Additionally, the aberrant expression of pro-inflammatory cytokines such as Interferon-gamma (IFN-γ) and Tumor Necrosis Factor-alpha (TNF-α) plays a critical role in the pathogenesis of vitiligo by disrupting melanocyte function and promoting immune-mediated destruction. Clinical trials and basic research have demonstrated the efficacy of JAK inhibitors in modulating these cytokine pathways and promoting melanocyte repigmentation. This review provides a comprehensive analysis of JAK inhibitors, exploring their mechanisms and latest applications in regulating cytokine and skin immune responses, aiming to optimize their use in vitiligo therapy.
Collapse
Affiliation(s)
- Kewei Liu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Linyi Zhou
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Meihui Shi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Tianxin Cong
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyi Yang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Xiangnan Zhou
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Ming Cheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Cong Ma
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; Department of Dermatology, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Shulan Yao
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; Department of Dermatology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Peiyao Ying
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Zhenzhen Mu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yan Wu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Zhang M, Lin Y, Han Z, Huang X, Zhou S, Wang S, Zhou Y, Han X, Chen H. Exploring mechanisms of skin aging: insights for clinical treatment. Front Immunol 2024; 15:1421858. [PMID: 39582871 PMCID: PMC11581952 DOI: 10.3389/fimmu.2024.1421858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The skin is the largest organ in the human body and is made up of various cells and structures. Over time, the skin will age, which is not only influenced by internal factors, but also by external environmental factors, especially ultraviolet radiation. Aging causes immune system weakening in the elderly, which makes them more susceptible to dermatosis, such as type 2 inflammatory mediated pruritus. The immune response in this condition is marked by senescent cells consistently releasing low amounts of pro-inflammatory cytokines through a senescence-associated secretory phenotype (SASP). This continuous inflammation may accelerate immune system aging and establish a connection between immune aging and type 2 inflammatory skin diseases. In addition, two chronic pigmentation disorders, vitiligo and chloasma, are also associated with skin aging. Aged cells escape the immune system and accumulate in tissues, forming a microenvironment that promotes cancer. At the same time, "photoaging" caused by excessive exposure to ultraviolet radiation is also an important cause of skin cancer. This manuscript describes the possible links between skin aging and type 2 inflammation, chronic pigmentation disorders, and skin cancer and suggests some treatment options.
Collapse
Affiliation(s)
- Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Zhou
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Xuan Han
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
6
|
He Y, Han Z, Zhang Q, Liu L, Chang J. Role of fibroblasts in nonfibrotic autoimmune skin diseases. Mol Med 2024; 30:178. [PMID: 39420283 PMCID: PMC11488258 DOI: 10.1186/s10020-024-00949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Autoimmune diseases, a disease characterized by immune imbalance caused by the human immune system mistakenly attacking its own components, include vitiligo, psoriasis and atopic dermatitis (AD). Previous studies on autoimmune diseases have focused mainly on immune cells, keratinocytes and endothelial cells. Fibroblasts, the main cells that secrete the extracellular matrix (ECM) in the dermis, have been studied thoroughly in terms of fibrosis and wound healing. However, an increasing number of studies have shown that fibroblasts play an important role in nonfibrotic autoimmune skin diseases. In this article, the previously reported role of fibroblasts in nonfibrous autoimmune skin diseases such as psoriasis, vitiligo and AD is summarized to provide new ideas for the treatment of this disease.
Collapse
Affiliation(s)
- Yuexi He
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhenxin Han
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qiuli Zhang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lin Liu
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jianmin Chang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
7
|
Jin L, Zhou S, Zhao S, Long J, Huang Z, Zhou J, Zhang Y. Early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and epithelial-mesenchymal transition during wound healing. BURNS & TRAUMA 2024; 12:tkae017. [PMID: 38887221 PMCID: PMC11182653 DOI: 10.1093/burnst/tkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/05/2024] [Indexed: 06/20/2024]
Abstract
Background Due to vasculature injury and increased oxygen consumption, the early wound microenvironment is typically in a hypoxic state. We observed enhanced cell migration ability under early short-term hypoxia. CCL2 belongs to the CC chemokine family and was found to be increased in early hypoxic wounds and enriched in the extracellular signal-regulated kinase (ERK)1/2 pathway in our previous study. However, the underlying mechanism through which the CCL2-ERK1/2 pathway regulates wound healing under early short-term hypoxia remains unclear. Activation of epithelial-mesenchymal transition (EMT) is a key process in cancer cell metastasis, during which epithelial cells acquire the characteristics of mesenchymal cells and enhance cell motility and migration ability. However, the relationship between epithelial cell migration and EMT under early short-term hypoxia has yet to be explored. Methods HaCaT cells were cultured to verify the effect of early short-term hypoxia on migration through cell scratch assays. Lentiviruses with silenced or overexpressed CCL2 were used to explore the relationship between CCL2 and migration under short-term hypoxia. An acute full-thickness cutaneous wound rat model was established with the application of an ERK inhibitor to reveal the hidden role of the ERK1/2 pathway in the early stage of wound healing. The EMT process was verified in all the above experiments through western blotting. Results In our study, we found that short-term hypoxia promoted cell migration. Mechanistically, hypoxia promoted cell migration through mediating CCL2. Overexpression of CCL2 via lentivirus promoted cell migration, while silencing CCL2 via lentivirus inhibited cell migration and the production of related downstream proteins. In addition, we found that CCL2 was enriched in the ERK1/2 pathway, and the application of an ERK inhibitor in vivo and in vitro verified the upstream and downstream relationships between the CCL2 pathway and ERK1/2. Western blot results both in vivo and in vitro demonstrated that early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and EMT during wound healing. Conclusions Our work demonstrated that hypoxia in the early stage serves as a stimulus for triggering wound healing through activating the CCL2-ERK1/2 pathway and EMT, which promote epidermal cell migration and accelerate wound closure. These findings provide additional detailed insights into the mechanism of wound healing and new targets for clinical treatment.
Collapse
Affiliation(s)
- Linbo Jin
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shiqi Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shihan Zhao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junhui Long
- Department of Dermatology, Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Zhidan Huang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junli Zhou
- Department of Burn and Plastic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| |
Collapse
|
8
|
Chen X, Wu Y, Jia S, Zhao M. Fibroblast: A Novel Target for Autoimmune and Inflammatory Skin Diseases Therapeutics. Clin Rev Allergy Immunol 2024; 66:274-293. [PMID: 38940997 DOI: 10.1007/s12016-024-08997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Fibroblasts are crucial components of the skin structure. They were traditionally believed to maintain the skin's structure by producing extracellular matrix and other elements. Recent research illuminated that fibroblasts can respond to external stimuli and exhibit diverse functions, such as the secretion of pro-inflammatory factors, adipogenesis, and antigen presentation, exhibiting remarkable heterogeneity and plasticity. This revelation positions fibroblasts as active contributors to the pathogenesis of skin diseases, challenging the traditional perspective that views fibroblasts solely as structural entities. Based on their diverse functions, fibroblasts can be categorized into six subtypes: pro-inflammatory fibroblasts, myofibroblasts, adipogenic fibroblasts, angiogenic fibroblasts, mesenchymal fibroblasts, and antigen-presenting fibroblasts. Cytokines, metabolism, and epigenetics regulate functional abnormalities in fibroblasts. The dynamic changes fibroblasts exhibit in different diseases and disease states warrant a comprehensive discussion. We focus on dermal fibroblasts' aberrant manifestations and pivotal roles in inflammatory and autoimmune skin diseases, including psoriasis, vitiligo, lupus erythematosus, scleroderma, and atopic dermatitis, and propose targeting aberrantly activated fibroblasts as a potential therapeutic strategy for inflammatory and autoimmune skin diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yutong Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
9
|
Migayron L, Bordes S, Closs B, Seneschal J, Boniface K. Type-2 immunity associated with type-1 related skin inflammatory diseases: friend or foe? Front Immunol 2024; 15:1405215. [PMID: 38868763 PMCID: PMC11167106 DOI: 10.3389/fimmu.2024.1405215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic inflammatory skin diseases are multifactorial diseases that combine genetic predisposition, environmental triggers, and metabolic disturbances associated with abnormal immune responses. From an immunological perspective, the better understanding of their physiopathology has demonstrated a large complex network of immune cell subsets and related cytokines that interact with both epidermal and dermal cells. For example, in type-1-associated diseases such as alopecia areata, vitiligo, and localized scleroderma, recent evidence suggests the presence of a type-2 inflammation that is well known in atopic dermatitis. Whether this type-2 immune response has a protective or detrimental impact on the development and chronicity of these diseases remains to be fully elucidated, highlighting the need to better understand its involvement for the management of patients. This mini-review explores recent insights regarding the potential role of type-2-related immunity in alopecia areata, vitiligo, and localized scleroderma.
Collapse
Affiliation(s)
- Laure Migayron
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
- R&D Department, SILAB, Brive-la-Gaillarde, France
| | | | | | - Julien Seneschal
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
- CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Katia Boniface
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
10
|
Liu C, Liu X, Xin H, Li X. A Mendelian randomization study on the causal effects of circulating cytokines on the risk of vitiligo. Front Med (Lausanne) 2024; 11:1375339. [PMID: 38695020 PMCID: PMC11061512 DOI: 10.3389/fmed.2024.1375339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 05/04/2024] Open
Abstract
Background Accumulating evidence reveals an association between circulating cytokine levels and vitiligo. However, the causal association between circulating cytokine levels and vitiligo remains unrevealed. Methods We performed a two-sample Mendelian randomization (MR) analysis using a genome-wide association study of the 41 cytokines dataset, which was conducted with 3 Finnish cohorts (n = 8,293). Vitiligo data were acquired from strictly defined vitiligo data collected by FinnGenbiobank analysis, which included 207,613 European ancestors (131 vitiligo patients, 207,482 controls). The inverse-variance weighted (IVW) method, weighted median (WME), simple model, weighted model, and MR-Egger were used to determine the changes in vitiligo pathogenic cytokine taxa, followed by sensitivity analysis, including horizontal pleiotropy analysis. The MR Steiger test evaluated the strength of a causal association, and the leave-one-out method was used to assess the reliability of the results. The possibility of reverse causality was also investigated using a reverse MR study. Results We observed that rising IL-4 levels generated an enhanced probability of vitiligo in IVW (OR 2.72, 95%CI 1.19-6.22, p = 0.018). According to the results of the MR analysis, there were causal links between IL-4 and vitiligo. Results were steady after sensitivity and heterogeneity analyses. Conclusion Our research reveals that a genetically determined increased level of circulating IL-4 may be linked to a higher risk of developing vitiligo. The development of innovative treatment approaches (such as tofacitinib or dupilumab) that focus on blocking IL-4 as a novel way of preventing and treating vitiligo is significantly impacted by our findings.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xingchen Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haiming Xin
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| |
Collapse
|
11
|
Shi Z, Liu Z, Wei Y, Zhang R, Deng Y, Li D. The role of dermal fibroblasts in autoimmune skin diseases. Front Immunol 2024; 15:1379490. [PMID: 38545113 PMCID: PMC10965632 DOI: 10.3389/fimmu.2024.1379490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/01/2024] [Indexed: 04/18/2024] Open
Abstract
Fibroblasts are an important subset of mesenchymal cells in maintaining skin homeostasis and resisting harmful stimuli. Meanwhile, fibroblasts modulate immune cell function by secreting cytokines, thereby implicating their involvement in various dermatological conditions such as psoriasis, vitiligo, and atopic dermatitis. Recently, variations in the subtypes of fibroblasts and their expression profiles have been identified in these prevalent autoimmune skin diseases, implying that fibroblasts may exhibit distinct functionalities across different diseases. In this review, from the perspective of their fundamental functions and remarkable heterogeneity, we have comprehensively collected evidence on the role of fibroblasts and their distinct subpopulations in psoriasis, vitiligo, atopic dermatitis, and scleroderma. Importantly, these findings hold promise for guiding future research directions and identifying novel therapeutic targets for treating these diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Migayron L, Merhi R, Seneschal J, Boniface K. Resident memory T cells in nonlesional skin and healed lesions of patients with chronic inflammatory diseases: Appearances can be deceptive. J Allergy Clin Immunol 2024; 153:606-614. [PMID: 37995858 DOI: 10.1016/j.jaci.2023.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tissue-resident memory T (TRM) cells serve as a first line of defense in peripheral tissues to protect the organism against foreign pathogens. However, autoreactive TRM cells are increasingly implicated in autoimmunity, as evidenced in chronic autoimmune and inflammatory skin conditions. This highlights the need to characterize their phenotype and understand their role for the purpose of targeting them specifically without affecting local immunity. To date, the investigation of TRM cells in human skin diseases has focused mainly on lesional tissues of patients. Accumulating evidence suggests that self-reactive TRM cells are still present in clinically healed lesions of patients and play a role in disease flares, but TRM cells also populate skin that is apparently normal. This review discusses the ontogeny of TRM cells in the skin as well as recent insights regarding the presence of self-reactive TRM cells in both clinically healed skin and nonlesional skin of patients with autoimmune and inflammatory skin conditions, with a particular focus on psoriasis, atopic dermatitis, and vitiligo.
Collapse
Affiliation(s)
- Laure Migayron
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; R&D Department, SILAB, Brive-la-Gaillarde, France
| | - Ribal Merhi
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France
| | - Julien Seneschal
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR Bordeaux, Bordeaux, France
| | - Katia Boniface
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France.
| |
Collapse
|
13
|
Boniface K. Aetiopathogenesis of Vitiligo. Dermatol Pract Concept 2023; 13:dpc.1304S2a314S. [PMID: 38241397 PMCID: PMC10824321 DOI: 10.5826/dpc.1304s2a314s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
Vitiligo is a chronic auto-immune disease characterized by skin depigmentation due to the loss of melanocytes. The better understanding of the disease mechanisms is currently undergoing a significant dynamism, opening a new era in therapeutic development. The pathophysiology of vitiligo has attracted the attention of researchers for years and many advances have been made in clarifying the crosstalk between the cellular players involved in the development of vitiligo lesions. The understanding of the complex interactions between epidermal cells (i.e. melanocytes and keratinocytes), dermal fibroblasts, and immune cells, led to a better characterization of the signals leading to the loss of melanocytes. Recent advances highlighted the role resident T memory cells in the development and recurrence of lesions. This narrative review aims to give an overview of the mechanisms leading to melanocyte disappearance in vitiligo, with a focus on the intercellular interaction network involved in the activation of the local skin immune response.
Collapse
Affiliation(s)
- Katia Boniface
- University of Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
14
|
Wei Y, Wang T, Nie X, Shi Z, Liu Z, Zeng Y, Pan R, Zhang R, Deng Y, Li D. 1,25-Dihydroxyvitamin D 3 Provides Benefits in Vitiligo Based on Modulation of CD8+ T Cell Glycolysis and Function. Nutrients 2023; 15:4697. [PMID: 37960350 PMCID: PMC10650610 DOI: 10.3390/nu15214697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Vitiligo is a common autoimmune skin disease caused by autoreactive CD8+ T cells. The diverse effects of 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃] on immune cell metabolism and proliferation have made it an interesting candidate as a supporting therapeutic option in various autoimmune diseases. This study aimed to elucidate the immunomodulatory effects of 1,25(OH)₂D₃ in vitiligo. Cross-sectional relationships between serum 1,25(OH)₂D₃ levels and disease characteristics were investigated in 327 patients with vitiligo. The immunomodulatory and therapeutic effects of 1,25(OH)₂D₃ were then investigated in vivo and in vitro, respectively. We found that 1,25(OH)₂D₃ deficiency was associated with hyperactivity of CD8+ T cells in the vitiligo cohort. In addition, 1,25(OH)₂D₃ suppressed glycolysis by activating the AMP-activated protein kinase (AMPK) signaling pathway, thereby inhibiting the proliferation, cytotoxicity and aberrant activation of CD8+ T cells. Finally, the in vivo administration of 1,25(OH)₂D₃ to melanocyte-associated vitiligo (MAV) mice reduced the infiltration and function of CD8+ T cells and promoted repigmentation. In conclusion, 1,25(OH)₂D₃ may serve as an essential biomarker of the progression and severity of vitiligo. The modulation of autoreactive CD8+ T cell function and glycolysis by 1,25(OH)₂D₃ may be a novel approach for treating vitiligo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dong Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (T.W.); (X.N.); (Z.S.); (Z.L.); (Y.Z.); (R.P.); (R.Z.); (Y.D.)
| |
Collapse
|
15
|
Sardana K, Muddebihal A, Khurana A. JAK inhibitors in vitiligo: what they hit and what they miss - an immunopathogenesis based exposition of existing evidence. Expert Rev Clin Pharmacol 2023; 16:1221-1227. [PMID: 37982238 DOI: 10.1080/17512433.2023.2285011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Vitiligo is an autoimmune disorder which presents as depigmented macules due to selective loss of melanocytes. Heightened expression of Janus Kinase Signal transducers and activators of transcription (JAK STAT) pathway, which mediate cytokines action, suggest that targeting this signaling pathway may be an effective option. AREAS COVERED A PubMed search was carried out with the broad key words 'JAK,' 'vitiligo' from 2016 to 2023. We also analyzed papers where tissue-based JAK expression was studied, with or without concomitant treatment with JAK inhibitors. We address the role of JAK inhibitors in vitiligo and their effect on repigmentation of lesions. EXPERT OPINION While JAK inhibitors help in cessation of disease progression, they have no in vivo action on melanocyte proliferation and hence cannot result in re-pigmentation as a monotherapy. There is a need for tissue-based JAK and cytokine-based studies with post-treatment expression data to validate the role of this class of drugs in vitiligo. There is as yet no data to suggest that selective JAK inhibitors are superior to pan JAK inhibitors for vitiligo. JAK inhibitors are useful in active disease and effectively modulate the cytokine mediated autoimmune dammage and makes them singularly superior to oral glucocorticosteroids.
Collapse
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi, India
| | - Aishwarya Muddebihal
- Department of Dermatology, Venereology and Leprosy, North Delhi Municipal Corporation Medical College and Hindu Rao Hospital, Delhi, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi, India
| |
Collapse
|
16
|
Luo L, Zhu J, Guo Y, Li C. Mitophagy and immune infiltration in vitiligo: evidence from bioinformatics analysis. Front Immunol 2023; 14:1164124. [PMID: 37287971 PMCID: PMC10242039 DOI: 10.3389/fimmu.2023.1164124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Background Vitiligo is an acquired, autoimmune, depigmented skin disease with unclear pathogenesis. Mitochondrial dysfunction contributes significantly to vitiligo, and mitophagy is vital for removing damaged mitochondria. Herein, using bioinformatic analysis, we sought to determine the possible role of mitophagy-associated genes in vitiligo and immune infiltration. Methods Microarrays GSE53146 and GSE75819 were used to identify differentially expressed genes (DEGs) in vitiligo. By crossing vitiligo DEGs with mitophagy-related genes, the mitophagy-related DEGs were identified. Functional enrichment and protein-protein intersection (PPI) analyses were conducted. Then, the hub genes were identified using two machine algorithms, and receiver operating characteristic (ROC) curves were generated. Next, the immune infiltration and its connection with hub genes in vitiligo were investigated. Finally, the Regnetwork database and NetworkAnalyst were used to predict the upstream transcriptional factors (TFs), microRNAs (miRNAs), and the protein-compound network. Results A total of 24 mitophagy-related genes were screened. Then, five mitophagy hub genes (GABARAPL2, SP1, USP8, RELA, and TBC1D17) were identified using two machine learning algorithms, and these genes showed high diagnostic specificity for vitiligo. The PPI network showed that hub genes interacted with each other. The mRNA expression levels of five hub genes were validated in vitiligo lesions by qRT-PCR and were compatible with the bioinformatic results. Compared with controls, the abundance of activated CD4+ T cells, CD8+ T cells, immature dendritic cells and B cells, myeloid-derived suppressor cells (MDSCs), gamma delta T cells, mast cells, regulatory T cells (Tregs), and T helper 2 (Th2) cells was higher. However, the abundance of CD56 bright natural killer (NK) cells, monocytes, and NK cells was lower. Correlation analysis revealed a link between hub genes and immune infiltration. Meanwhile, we predicted the upstream TFs and miRNAs and the target compounds of hub genes. Conclusion Five hub mitophagy-related genes were identified and correlated with immune infiltration in vitiligo. These findings suggested that mitophagy may promote the development of vitiligo by activating immune infiltration. Our study might enhance our comprehension of the pathogenic mechanism of vitiligo and offer a treatment option for vitiligo.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Saif GAB, Alshammary AF, Ali Khan I. Evaluation of CAT Variants A-89T, C389T, and C419T in Patients with Vitiligo in the Saudi Population. Medicina (B Aires) 2023; 59:medicina59040708. [PMID: 37109666 PMCID: PMC10141203 DOI: 10.3390/medicina59040708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Background and Objectives: Vitiligo is a chronic autoimmune and depigmentation disorder in humans that manifests as whitening lesions. Reactive oxygen species (ROS) are involved in cell damage. Catalase (CAT) is a well-known oxidative stress regulator and is primarily responsible for the catalytic decomposition of hydrogen peroxide into water and oxygen. Based on previous case-control and meta-analysis studies, we assessed the prevalence of three single-nucleotide polymorphisms (SNPs) of the CAT genes A-89T (rs7943316), C389T (rs769217) and C419T (rs11032709) in participants with vitiligo and healthy controls in the Saudi population. Materials and Methods: We recruited 152 participants with vitiligo and 159 healthy controls for A-89T, C389T, and C419T SNP genotyping studies using PCR and RFLP analysis. Additionally, we performed linkage disequilibrium and haplotype analyses between vitiligo cases and controls. Results: The rs7943316 and rs11032709 SNPs of the CAT genes showed a positive association with vitiligo for both heterozygous genotypes and dominant genetic models (TT + AT vs. AA in A-89T and TT + CT vs. CC in C389T), in the CAT gene. Linkage disequilibrium analysis revealed a moderate linkage between rs7943316 and rs11032709 SNPs in vitiligo cases and controls. Haplotype frequency estimation revealed a significant association (p = 0.003) among the three SNP alleles. Conclusions: The rs7943316 and rs11032709 SNPs of the CAT genes were strongly associated with susceptibility to vitiligo.
Collapse
Affiliation(s)
- Ghada A. Bin Saif
- Department of Dermatology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
18
|
Xie B, Zhu Y, Shen Y, Xu W, Song X. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection. Expert Opin Ther Targets 2023; 27:189-206. [PMID: 36947026 DOI: 10.1080/14728222.2023.2193329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The treatment of vitiligo remains challenging due to the complexity of its pathogenesis, influenced by genetic factors, oxidative stress and abnormal cell adhesion that collectively impact melanocyte survival and trigger immune system attacks, resulting in melanocyte death. Melanocytes in vitiligo are believed to exhibit genetic susceptibility and defects in cellular mechanisms, such as defects in autophagy, that reduce their ability to resist oxidative stress, leading to increased expression of the pro-inflammatory protein HSP70. The low expression of adhesion molecules, such as DDR1 and E-cadherin, accelerates melanocyte damage and antigen exposure. Consequently, autoimmune attacks centered on IFN-γ-CXCR9/10-CXCR3-CD8+ T cells are initiated, causing vitiligo. AREAS COVERED This review discusses the latest knowledge on the pathogenesis of vitiligo and potential therapeutic targets from the perspective of suppressing autoimmune attacks and activating melanocytes functions. EXPERT OPINION Vitiligo is one of the most challenging dermatological diseases due to its complex pathogenesis with diverse therapeutic targets. Immune suppression, such as corticosteroids and emerging JAK inhibitors, has proven effective in disease progression. However, during the early stages of the disease, it is also important to optimize therapeutic strategies to activate melanocytes for alleviating oxidative stress and improving treatment outcomes.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine; Yuhangtang Rd 866, Hangzhou, 310058, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| |
Collapse
|