1
|
Corsaro A, Dellacasagrande I, Tomanelli M, Pagano A, Barbieri F, Thellung S, Florio T. The expression of pro-prion, a transmembrane isoform of the prion protein, leads to the constitutive activation of the canonical Wnt/β-catenin pathway to sustain the stem-like phenotype of human glioblastoma cells. Cancer Cell Int 2024; 24:426. [PMID: 39716276 DOI: 10.1186/s12935-024-03581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Cellular prion protein (PrPC) is a widely expressed membrane-anchored glycoprotein, which has been associated with the development and progression of several types of human malignancies, controlling cancer stem cell activity. However, the different molecular mechanisms regulated by PrPC in normal and tumor cells have not been characterized yet. METHODS To assess the role of PrPC in patient-derived glioblastoma stem cell (GSC)-enriched cultures, we generated cell lines in which PrPC was either overexpressed or down-regulated and investigated, in 2D and 3D cultures, its role in cell proliferation, migration, and invasion. We evaluated the role of PrPC in supporting GSC stemness and the intracellular signaling involved using qRT-PCR, immunocytofluorescence, and Western blot. RESULTS Stable PrPC down-regulation leads to a significant reduction of GSC proliferation, migration, and invasiveness. These effects were associated with the inhibition of the expression of stemness genes and overexpression of differentiation markers. At molecular level PrPC down-regulation caused a significant inhibition of Wnt/β-catenin pathway, through a reduced expression of Wnt and Frizzled ligand/receptor subtypes, resulting in the inhibition of β-catenin transcriptional activity, as demonstrated by the reduced expression of its target genes. The specificity of PrPC in these effects was demonstrated by rescuing the phenotype and the biological activity of PrPC down-regulated GSCs by re-expressing the protein. To get insights into the distinct mechanisms by which PrPC regulates proliferation in GSCs, but not in normal astrocytes, we analyzed structural features of PrPC in glioma stem cells and astrocytes using Western blot and immunofluorescence techniques. Using Pi-PLC, an enzyme that cleaves GPI anchors, we show that, in GSCs, PrP is retained within the plasma membrane in an immature Pro-PrP isoform whereas in astrocytes, it is expressed in its mature PrPC form, anchored on the extracellular face of the plasma membrane. CONCLUSIONS The persistence of Pro-PrP in GSCs is an altered cellular mechanism responsible of the aberrant, constitutive activation of Wnt/β-catenin pathway, which contributes to glioblastoma malignant features. Thus, the activity of Pro-PrP may represent a targetable vulnerability in glioblastoma cells, offering a novel approach for differentiating and eradicating glioblastoma stem cells.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Irene Dellacasagrande
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Michele Tomanelli
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Aldo Pagano
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
2
|
Qin Y, Xiong S, Ren J, Sethi G. Autophagy machinery in glioblastoma: The prospect of cell death crosstalk and drug resistance with bioinformatics analysis. Cancer Lett 2024; 580:216482. [PMID: 37977349 DOI: 10.1016/j.canlet.2023.216482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Brain tumors are common malignancies with high mortality and morbidity in which glioblastoma (GB) is a grade IV astrocytoma with heterogeneous nature. The conventional therapeutics for the GB mainly include surgery and chemotherapy, however their efficacy has been compromised due to the aggressiveness of tumor cells. The dysregulation of cell death mechanisms, especially autophagy has been reported as a factor causing difficulties in cancer therapy. As a mechanism contributing to cell homeostasis, the autophagy process is hijacked by tumor cells for the purpose of aggravating cancer progression and drug resistance. The autophagy function is context-dependent and its role can be lethal or protective in cancer. The aim of the current paper is to highlight the role of autophagy in the regulation of GB progression. The cytotoxic function of autophagy can promote apoptosis and ferroptosis in GB cells and vice versa. Autophagy dysregulation can cause drug resistance and radioresistance in GB. Moreover, stemness can be regulated by autophagy and overall growth as well as metastasis are affected by autophagy. The various interventions including administration of synthetic/natural products and nanoplatforms can target autophagy. Therefore, autophagy can act as a promising target in GB therapy.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Afflicted Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Shengjun Xiong
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, 16 Medical Drive, Singapore, 117600, Singapore.
| |
Collapse
|
3
|
Wang Y, Dai X, Li H, Jiang H, Zhou J, Zhang S, Guo J, Shen L, Yang H, Lin J, Yan H. The role of mitochondrial dynamics in disease. MedComm (Beijing) 2023; 4:e462. [PMID: 38156294 PMCID: PMC10753647 DOI: 10.1002/mco2.462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Mitochondria are multifaceted and dynamic organelles regulating various important cellular processes from signal transduction to determining cell fate. As dynamic properties of mitochondria, fusion and fission accompanied with mitophagy, undergo constant changes in number and morphology to sustain mitochondrial homeostasis in response to cell context changes. Thus, the dysregulation of mitochondrial dynamics and mitophagy is unsurprisingly related with various diseases, but the unclear underlying mechanism hinders their clinical application. In this review, we summarize the recent developments in the molecular mechanism of mitochondrial dynamics and mitophagy, particularly the different roles of key components in mitochondrial dynamics in different context. We also summarize the roles of mitochondrial dynamics and target treatment in diseases related to the cardiovascular system, nervous system, respiratory system, and tumor cell metabolism demanding high-energy. In these diseases, it is common that excessive mitochondrial fission is dominant and accompanied by impaired fusion and mitophagy. But there have been many conflicting findings about them recently, which are specifically highlighted in this view. We look forward that these findings will help broaden our understanding of the roles of the mitochondrial dynamics in diseases and will be beneficial to the discovery of novel selective therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Xinyan Dai
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Hui Li
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huiling Jiang
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Junfu Zhou
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Shiying Zhang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jiacheng Guo
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Lidu Shen
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huantao Yang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jie Lin
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Hengxiu Yan
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| |
Collapse
|
4
|
Abi Nahed R, Safwan-Zaiter H, Gemy K, Lyko C, Boudaud M, Desseux M, Marquette C, Barjat T, Alfaidy N, Benharouga M. The Multifaceted Functions of Prion Protein (PrP C) in Cancer. Cancers (Basel) 2023; 15:4982. [PMID: 37894349 PMCID: PMC10605613 DOI: 10.3390/cancers15204982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The cellular prion protein (PrPC) is a glycoprotein anchored to the cell surface by glycosylphosphatidylinositol (GPI). PrPC is expressed both in the brain and in peripheral tissues. Investigations on PrPC's functions revealed its direct involvement in neurodegenerative and prion diseases, as well as in various physiological processes such as anti-oxidative functions, copper homeostasis, trans-membrane signaling, and cell adhesion. Recent findings have revealed the ectopic expression of PrPC in various cancers including gastric, melanoma, breast, colorectal, pancreatic, as well as rare cancers, where PrPC promotes cellular migration and invasion, tumor growth, and metastasis. Through its downstream signaling, PrPC has also been reported to be involved in resistance to chemotherapy and tumor cell apoptosis. This review summarizes the variance of expression of PrPC in different types of cancers and discusses its roles in their development and progression, as well as its use as a potential target to treat such cancers.
Collapse
Affiliation(s)
- Roland Abi Nahed
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Hasan Safwan-Zaiter
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Kevin Gemy
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Camille Lyko
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Mélanie Boudaud
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Morgane Desseux
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Christel Marquette
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Tiphaine Barjat
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Nadia Alfaidy
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Mohamed Benharouga
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| |
Collapse
|
5
|
Limone A, Maggisano V, Sarnataro D, Bulotta S. Emerging roles of the cellular prion protein (PrP C) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell Mol Life Sci 2023; 80:207. [PMID: 37452879 PMCID: PMC10349719 DOI: 10.1007/s00018-023-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.
Collapse
Affiliation(s)
- Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| |
Collapse
|