1
|
Rouleau M, Schwab M, Klein K, Tremmel R, Haag M, Schaeffeler E, Guillemette C. The liver proteome of individuals with a natural UGT2B17 complete deficiency. Sci Rep 2025; 15:5458. [PMID: 39953065 PMCID: PMC11828848 DOI: 10.1038/s41598-025-89160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Glucuronidation is a crucial pathway for the metabolism and detoxification of drugs and endobiotics, and primarily occurs in the liver. UGT2B17 is one of the 22 glycosyltransferases (UGT) that catalyze this reaction. In a large proportion of the population, UGT2B17 is absent due to complete gene deletion. We hypothesized that a UGT2B17 human deficiency affects the composition and function of the liver proteome, potentially provoking compensatory responses, and altering interconnected pathways and regulatory networks. The objective was to elucidate the liver proteome of UGT2B17-deficient individuals. Liver specimens from UGT2B17-deficient and proficient individuals were compared by mass spectrometry-based proteomics using data-independent acquisition. In UGT2B17-deficient livers, 80% of altered proteins showed increased abundance with a notable enrichment in various metabolic and chemical defense pathways, cellular stress and immune-related responses. Enzymes involved in the homeostasis of steroids, nicotinamide, carbohydrate and energy metabolism, and sugar pathways were also more abundant. Some of these changes support compensatory mechanisms, but do not involve other UGTs. An increased abundance of non-metabolic proteins suggests an adaptation to endoplasmic reticulum stress, and activation of immune responses. Data implies a disrupted hepatocellular homeostasis in UGT2B17-deficient individuals and offers new perspectives on functions and phenotypes associated with a complete UGT2B17 deficiency.
Collapse
Affiliation(s)
- Michèle Rouleau
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc-UL), Faculty of Pharmacy and Université Laval Cancer Research Center, Université Laval, R4701.5, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
- Departements of Clinical Pharmacology, and of Biochemistry and Pharmacy, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc-UL), Faculty of Pharmacy and Université Laval Cancer Research Center, Université Laval, R4701.5, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.
- Canada Research Chair in Pharmacogenomics, Université Laval, Quebec, Canada.
| |
Collapse
|
2
|
Kismali G, Manyam G, Jain N, Ivan C, Lamothe B, Ayres ML, Iles LR, Wierda WG, Gandhi V. Transcriptomic clustering of chronic lymphocytic leukemia: molecular subtypes based on Bruton's tyrosine kinase expression levels. Blood Cancer J 2024; 14:220. [PMID: 39695112 DOI: 10.1038/s41408-024-01196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Historically, CLL prognostication relied on disease burden, reflected in clinical stage. Later, chromosome abnormalities and genomics suggested several CLL subtypes which were aligned with response to therapy. Gene expression profiling data identified pathways associated with CLL progression. We hypothesized that transcriptome and proteome may identify functional omics associated with CLL nosology. As a test cohort, we utilized publicly available treatment-naïve CLL transcriptomics data (n = 130) and did consensus clustering that identified BTK-expression-based clusters. The BTK-High and BTK-Low clusters were validated in public and our in-house databases (n = >550 CLL patients). To associate with functional relevance, we took samples from 151 previously treated patient with CLL and analyzed them using RNA sequencing and reverse-phase protein array. Transcript levels were strongly correlated with BTK protein levels. BTK-High subtype showed increased CCL3/CCL4 levels and disease burden such as high WBC. BTK-Low subtype showed down-regulated mRNA/proteins of DNA-repair pathway and increased DNA-damage-response, which may have contributed to enrichment of inflammatory pathway. BTK-Low subtype was rich in proapoptotic gene and protein expression and relied less on BCR pathway. High-BTK subgroup was enriched in replication/repair pathway and transcription machinery. In conclusion, profiling of 5 datasets of ~700 patients revealed unique BTK-associated expression clusters in CLL.
Collapse
Affiliation(s)
- Gorkem Kismali
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Ankara University Faculty of Veterinary Medicine, Department of Biochemistry, Ankara, Turkey
| | - Ganiraju Manyam
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Caris Life Sciences, Irving, TX, USA
| | - Betty Lamothe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Incyte Pharmaceuticals, Wilmington, Delaware, USA
| | - Mary L Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - LaKesla R Iles
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Rouleau M, Villeneuve L, Allain EP, McCabe-Leroux J, Tremblay S, Nguyen Van Long F, Uchil A, Joly-Beauparlant C, Droit A, Guillemette C. Non-canonical transcriptional regulation of the poor prognostic factor UGT2B17 in chronic lymphocytic leukemic and normal B cells. BMC Cancer 2024; 24:410. [PMID: 38566115 PMCID: PMC10985967 DOI: 10.1186/s12885-024-12143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND High expression of the glycosyltransferase UGT2B17 represents an independent adverse prognostic marker in chronic lymphocytic leukemia (CLL). It also constitutes a predictive marker for therapeutic response and a drug resistance mechanism. The key determinants driving expression of the UGT2B17 gene in normal and leukemic B-cells remain undefined. The UGT2B17 transcriptome is complex and is comprised of at least 10 alternative transcripts, identified by previous RNA-sequencing of liver and intestine. We hypothesized that the transcriptional program regulating UGT2B17 in B-lymphocytes is distinct from the canonical expression previously characterized in the liver. RESULTS RNA-sequencing and genomics data revealed a specific genomic landscape at the UGT2B17 locus in normal and leukemic B-cells. RNA-sequencing and quantitative PCR data indicated that the UGT2B17 enzyme is solely encoded by alternative transcripts expressed in CLL patient cells and not by the canonical transcript widely expressed in the liver and intestine. Chromatin accessible regions (ATAC-Seq) in CLL cells mapped with alternative promoters and non-coding exons, which may be derived from endogenous retrotransposon elements. By luciferase reporter assays, we identified key cis-regulatory STAT3, RELA and interferon regulatory factor (IRF) binding sequences driving the expression of UGT2B17 in lymphoblastoid and leukemic B-cells. Electrophoretic mobility shift assays and pharmacological inhibition demonstrated key roles for the CLL prosurvival transcription factors STAT3 and NF-κB in the leukemic expression of UGT2B17. CONCLUSIONS UGT2B17 expression in B-CLL is driven by key regulators of CLL progression. Our data suggest that a NF-κB/STAT3/IRF/UGT2B17 axis may represent a novel B-cell pathway promoting disease progression and drug resistance.
Collapse
Affiliation(s)
- Michèle Rouleau
- Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc- UL), Université Laval, Québec, QC, Canada
- Cancer research center of Université Laval, Québec, Canada
| | - Lyne Villeneuve
- Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc- UL), Université Laval, Québec, QC, Canada
- Cancer research center of Université Laval, Québec, Canada
| | - Eric P Allain
- Molecular Genetics Laboratory, Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Center, Moncton, NB, Canada
| | - Jules McCabe-Leroux
- Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc- UL), Université Laval, Québec, QC, Canada
- Cancer research center of Université Laval, Québec, Canada
| | - Sophie Tremblay
- Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc- UL), Université Laval, Québec, QC, Canada
- Cancer research center of Université Laval, Québec, Canada
| | - Flora Nguyen Van Long
- Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc- UL), Université Laval, Québec, QC, Canada
- Cancer research center of Université Laval, Québec, Canada
| | - Ashwini Uchil
- Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc- UL), Université Laval, Québec, QC, Canada
- Cancer research center of Université Laval, Québec, Canada
| | - Charles Joly-Beauparlant
- Cancer research center of Université Laval, Québec, Canada
- CRCHUQc-UL and Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Arnaud Droit
- Cancer research center of Université Laval, Québec, Canada
- CRCHUQc-UL and Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Chantal Guillemette
- Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc- UL), Université Laval, Québec, QC, Canada.
- Cancer research center of Université Laval, Québec, Canada.
- Canada Research Chair in Pharmacogenomics, Faculty of Pharmacy, Université Laval, Québec, QC, Canada.
| |
Collapse
|