1
|
Yao Q, Chen L, Cai Y, Li C, Wen S, Yang C, Zhang Q, Zeng Y, Zheng S, Zou J, Huang G, Zeng Q. Exploring Causal Links Between Gut Microbiota and Geriatric Syndromes: A Two-Sample Mendelian Randomization Analysis. Int J Med Sci 2024; 21:1945-1963. [PMID: 39113894 PMCID: PMC11302557 DOI: 10.7150/ijms.94335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Both observational studies and clinical trials have demonstrated a link between the gut microbiota and the geriatric syndrome. Nevertheless, the exact nature of this relationship, particularly concerning causality, remains elusive. Mendelian randomization (MR) is a method of inference based on genetic variation to assess the causal relationship between an exposure and an outcome. In this study, we conducted a two-sample Mendelian randomization (TSMR) study to fully reveal the potential genetic causal effects of gut microbiota on geriatric syndromes. Methods: This study used data from genome wide association studies (GWAS) to investigate causal relationships between the gut microbiota and geriatric syndromes, including frailty, Parkinson's disease (PD), delirium, insomnia, and depression. The primary causal relationships were evaluated using the inverse-variance weighted method, MR Egger, simple mode, weighted mode and weighted median. To assess the robustness of the results, horizontal pleiotropy was examined through MR-Egger intercept and MR-presso methods. Heterogeneity was assessed using Cochran's Q test, and sensitivity was evaluated via the leave-one-out method. Results: We identified 41 probable causal relationships between gut microbiota and five geriatric syndrome-associated illnesses using the inverse-variance weighted method. Frailty showed five positive and two negative causal relationships, while PD revealed three positive and four negative causal connections. Delirium showed three positive and two negative causal relationships. Similarly, insomnia demonstrated nine positive and two negative causal connections, while depression presented nine positive and two negative causal relationships. Conclusions: Using the TSMR method and data from the public GWAS database and, we observed associations between specific microbiota groups and geriatric syndromes. These findings suggest a potential role of gut microbiota in the development of geriatric syndromes, providing valuable insights for further research into the causal relationship between gut microbiota and these syndromes.
Collapse
Affiliation(s)
- Qiuru Yao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Ling Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Changxi Li
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyang Wen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qi Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Yuting Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqi Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
- Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Chen P, Wang Y, Zhou B. Insights into targeting cellular senescence with senolytic therapy: The journey from preclinical trials to clinical practice. Mech Ageing Dev 2024; 218:111918. [PMID: 38401690 DOI: 10.1016/j.mad.2024.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Interconnected, fundamental aging processes are central to many illnesses and diseases. Cellular senescence is a mechanism that halts the cell cycle in response to harmful stimuli. Senescent cells (SnCs) can emerge at any point in life, and their persistence, along with the numerous proteins they secrete, can negatively affect tissue function. Interventions aimed at combating persistent SnCs, which can destroy tissues, have been used in preclinical models to delay, halt, or even reverse various diseases. Consequently, the development of small-molecule senolytic medicines designed to specifically eliminate SnCs has opened potential avenues for the prevention or treatment of multiple diseases and age-related issues in humans. In this review, we explore the most promising approaches for translating small-molecule senolytics and other interventions targeting senescence in clinical practice. This discussion highlights the rationale for considering SnCs as therapeutic targets for diseases affecting individuals of all ages.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, P.R. China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|