1
|
Caserta S, Cancemi G, Murdaca G, Stagno F, Di Gioacchino M, Gangemi S, Allegra A. The Effects of Cancer Immunotherapy on Fertility: Focus on Hematological Malignancies. Biomedicines 2024; 12:2106. [PMID: 39335619 PMCID: PMC11428457 DOI: 10.3390/biomedicines12092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, cancer management has benefitted from new effective treatments, including immunotherapy. While these therapies improve cancer survival rates, they can alter immune responses and cause long-term side effects, of which gonadotoxic effects and the potential impact on male and female fertility are growing concerns. Immunotherapies, such as immune checkpoint inhibitors, immunomodulators, monoclonal antibodies, and CAR-T, can lead to elevated levels of proinflammatory cytokines and immune-related adverse events that may exacerbate fertility problems. Immunotherapy-related inflammation, characterized by cytokine imbalances and the activation of pathways such as AMPK/mTOR, has been implicated in the mechanisms of fertility impairment. In men, hypospermatogenesis and aspermatogenesis have been observed after treatment with immune checkpoint inhibitors, by direct effects on the gonads, particularly through the inhibition of cytotoxic T lymphocyte antigen-4. In women, both damage to ovarian reserves, recurrent pregnancy loss, and implantation failure have been documented, secondary to a complex interplay between immune cells, such as T cells and uterine NK cells. In this review, the impact of immunotherapy on fertility in patients with hematological cancers was analyzed. While this area is still underexplored, fertility preservation methods remain crucial. Future studies should investigate immunotherapy's effects on fertility and establish standardized preservation protocols.
Collapse
Affiliation(s)
- Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.C.); (F.S.); (A.A.)
| | - Gabriella Cancemi
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.C.); (F.S.); (A.A.)
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16126 Genova, Italy
- Allergology and Clinical Immunology, San Bartolomeo Hospital, 19038 Sarzana, Italy
| | - Fabio Stagno
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.C.); (F.S.); (A.A.)
| | - Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy;
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.C.); (F.S.); (A.A.)
| |
Collapse
|
2
|
Zhuang X, Chen P, Yang R, Man X, Wang R, Shi Y. Mendelian randomization analysis reveals the combined effects of epigenetics and telomere biology in hematologic cancers. Clin Epigenetics 2024; 16:120. [PMID: 39192284 DOI: 10.1186/s13148-024-01728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Telomere shortening and epigenetic modifications are key factors in aging and hematologic diseases. This study investigates the relationship of telomere length and epigenetic age acceleration (EAA) with hematologic cancers, blood cells, and biochemical markers through the epigenetic clocks. METHODS This study primarily utilizes genome-wide association studies of populations of European descent as instrumental variables, exploring the causal relationships between exposures and outcomes through a bidirectional two-sample Mendelian randomization (MR) approach. MR techniques include inverse variance weighted (IVW), MR Egger, and weighted median modes. Heterogeneity and pleiotropy in MR are assessed using Cochran's Q test and the MR Egger intercept, with the robustness of the conclusions further validated by multivariable MR (MVMR). RESULTS Our research shows that longer telomere lengths significantly increase the risk of multiple myeloma, leukemia, and lymphoma (OR > 1, P < 0.05) and establish a causal relationship between telomere length and red blood cell indices such as RBC (OR = 1.121, PIVW = 0.034), MCH (OR = 0.801, PIVW = 2.046e-06), MCV (OR = 0.801, PIVW = 0.001), and MCHC (OR = 0.813, PIVW = 0.002). Additionally, MVMR analysis revealed an association between DNA methylation PhenoAge acceleration and alkaline phosphatase (OR = 1.026, PIVW = 0.007). CONCLUSION The study clarifies the relationships between telomere length, EAA, and hematological malignancies, further emphasizing the prognostic significance of telomere length and EAA. This deepens our understanding of the pathogenesis of hematological diseases, which can inform risk assessment and therapeutic strategies.
Collapse
Affiliation(s)
- Xin Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Man
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruochen Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Qinghai Province Women and Children's Hospital, Wenzhou, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Wenzhou, China.
| |
Collapse
|
3
|
Isola S, Gammeri L, Furci F, Gangemi S, Pioggia G, Allegra A. Vitamin C Supplementation in the Treatment of Autoimmune and Onco-Hematological Diseases: From Prophylaxis to Adjuvant Therapy. Int J Mol Sci 2024; 25:7284. [PMID: 39000393 PMCID: PMC11241675 DOI: 10.3390/ijms25137284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Vitamin C is a water-soluble vitamin introduced through the diet with anti-inflammatory, immunoregulatory, and antioxidant activities. Today, this vitamin is integrated into the treatment of many inflammatory pathologies. However, there is increasing evidence of possible use in treating autoimmune and neoplastic diseases. We reviewed the literature to delve deeper into the rationale for using vitamin C in treating this type of pathology. There is much evidence in the literature regarding the beneficial effects of vitamin C supplementation for treating autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) and neoplasms, particularly hematological neoplastic diseases. Vitamin C integration regulates the cytokines microenvironment, modulates immune response to autoantigens and cancer cells, and regulates oxidative stress. Moreover, integration therapy has an enhanced effect on chemotherapies, ionizing radiation, and target therapy used in treating hematological neoplasm. In the future, integrative therapy will have an increasingly important role in preventing pathologies and as an adjuvant to standard treatments.
Collapse
Affiliation(s)
- Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Luca Gammeri
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
4
|
Caserta S, Cancemi G, Loreta S, Allegra A, Stagno F. Hematological Malignancies in Older Patients: Focus on the Potential Role of a Geriatric Assessment Management. Diagnostics (Basel) 2024; 14:1390. [PMID: 39001280 PMCID: PMC11241324 DOI: 10.3390/diagnostics14131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Geriatric assessment management is a multidimensional tool used to evaluate prognosis for clinical outcomes and targets for interventions in older adults with cancer receiving chemotherapy. In this review, we evaluated the possible application of geriatric assessment management (GAM) in hematological malignancies. In older patients with Diffuse Large B Cell Lymphoma, GAM might be helpful in both predicting planned hospital admissions and improving quality of life. In chronic myeloid leukemia, the Charlson Comorbidity Index demonstrates how comorbidities could affect treatment compliance and overall outcomes. In multiple myeloma, the application of different scores such as the International Myeloma Working Group Frailty Index and the Revised Myeloma Comorbidity Index can identify frail patients who need suitable interventions in treatment plan (reducing drug dose or changing treatment). Therefore, including GAM in the management plan of older patients with hematological malignancies may direct and optimize cancer care.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Silverio Loreta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Fabio Stagno
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
5
|
Fackler MJ, Pleas M, Li Y, Soni A, Xing D, Cope L, Ali S, Van Le Q, Van Nguyen C, Pham HT, Duong LM, Vanden Berg E, Wadee R, Michelow P, Chen WC, Joffe M, Fjeldbo CS, Lyng H, Sukumar S. Discovery and technical validation of high-performance methylated DNA markers for the detection of cervical lesions at risk of malignant progression in low- and middle-income countries. Clin Epigenetics 2024; 16:56. [PMID: 38643219 PMCID: PMC11032610 DOI: 10.1186/s13148-024-01669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Cervical cancer remains a leading cause of death, particularly in developing countries. WHO screening guidelines recommend human papilloma virus (HPV) detection as a means to identify women at risk of developing cervical cancer. While HPV testing identifies those at risk, it does not specifically distinguish individuals with neoplasia. We investigated whether a quantitative molecular test that measures methylated DNA markers could identify high-risk lesions in the cervix with accuracy. RESULTS Marker discovery was performed in TCGA-CESC Infinium Methylation 450 K Array database and verified in three other public datasets. The panel was technically validated using Quantitative Multiplex-Methylation-Specific PCR in tissue sections (N = 252) and cervical smears (N = 244) from the USA, South Africa, and Vietnam. The gene panel consisted of FMN2, EDNRB, ZNF671, TBXT, and MOS. Cervical tissue samples from all three countries showed highly significant differential methylation in squamous cell carcinoma (SCC) with a sensitivity of 100% [95% CI 74.12-100.00], and specificity of 91% [95% CI 62.26-99.53] to 96% [95% CI 79.01-99.78], and receiver operating characteristic area under the curve (ROC AUC) = 1.000 [95% CI 1.00-1.00] compared to benign cervical tissue, and cervical intraepithelial neoplasia 2/3 with sensitivity of 55% [95% CI 37.77-70.84] to 89% [95% CI 67.20-98.03], specificity of 93% [95% CI 84.07-97.38] to 96% [95% CI 79.01-99.78], and a ROC AUC ranging from 0.793 [95% CI 0.68-0.89] to 0.99 [95% CI 0.97-1.00] compared to CIN1. In cervical smears, the marker panel detected SCC with a sensitivity of 87% [95% CI 77.45-92.69], specificity 95% [95% CI 88.64-98.18], and ROC AUC = 0.925 [95% CI 0.878-0.974] compared to normal, and high-grade squamous intraepithelial lesion (HSIL) at a sensitivity of 70% (95% CI 58.11-80.44), specificity of 94% (95% CI 88.30-97.40), and ROC AUC = 0.884 (95% CI 0.822-0.945) compared to low-grade intraepithelial lesion (LSIL)/normal in an analysis of pooled data from the three countries. Similar to HPV-positive, HPV-negative cervical carcinomas were frequently hypermethylated for these markers. CONCLUSIONS This 5-marker panel detected SCC and HSIL in cervical smears with a high level of sensitivity and specificity. Molecular tests with the ability to rapidly detect high-risk HSIL will lead to timely treatment for those in need and prevent unnecessary procedures in women with low-risk lesions throughout the world. Validation of these markers in prospectively collected cervical smear cells followed by the development of a hypermethylated marker-based cervical cancer detection test is warranted.
Collapse
Affiliation(s)
- Mary Jo Fackler
- Women's Malignancies Program, Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Rm 144, CRB1, Baltimore, MD, 21231, USA
| | - Madison Pleas
- Women's Malignancies Program, Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Rm 144, CRB1, Baltimore, MD, 21231, USA
| | - Youran Li
- Women's Malignancies Program, Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Rm 144, CRB1, Baltimore, MD, 21231, USA
| | - Anushri Soni
- Women's Malignancies Program, Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Rm 144, CRB1, Baltimore, MD, 21231, USA
| | - Deyin Xing
- Women's Malignancies Program, Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Rm 144, CRB1, Baltimore, MD, 21231, USA
| | - Leslie Cope
- Women's Malignancies Program, Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Rm 144, CRB1, Baltimore, MD, 21231, USA
| | - Syed Ali
- Division of Cytopathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Quang Van Le
- Hanoi Medical University, National Cancer Hospital, Hanoi, Vietnam
| | - Chu Van Nguyen
- Department of Quansu Pathology, National Cancer Hospital, Hanoi, Vietnam
| | - Han Thi Pham
- Department of Quansu Pathology, National Cancer Hospital, Hanoi, Vietnam
| | - Long Minh Duong
- Department of Quansu Pathology, National Cancer Hospital, Hanoi, Vietnam
| | - Eunice Vanden Berg
- Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand/National Health Laboratory Service, Johannesburg, South Africa
| | - Reubina Wadee
- Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand/National Health Laboratory Service, Johannesburg, South Africa
| | - Pamela Michelow
- Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand/National Health Laboratory Service, Johannesburg, South Africa
| | - Wenlong Carl Chen
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christina Saetan Fjeldbo
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Saraswati Sukumar
- Women's Malignancies Program, Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Rm 144, CRB1, Baltimore, MD, 21231, USA.
| |
Collapse
|
6
|
Caserta S, Stagno F, Gangemi S, Allegra A. Highlights on the Effects of Non-Coding RNAs in the Osteonecrosis of the Jaw. Int J Mol Sci 2024; 25:1598. [PMID: 38338876 PMCID: PMC10855359 DOI: 10.3390/ijms25031598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Osteonecrosis of the jaw is the progressive loss and destruction of bone affecting the maxilla or mandible in patients treated with antiresorptive and antiangiogenic agents without receiving prior radiation therapy. The pathogenesis involves the inflammatory pathway of receptor activator of nuclear factor NF-kB ligand and the macrophage colony-stimulating factor, essential for osteoclast precursors survival and proliferation and acting through its receptor c-Fms. Evidence has shown the role of non-coding RNAs in the pathogenesis of osteonecrosis of the jaw and this finding might be useful in diagnosis since these small RNAs could be considered as biomarkers of apoptotic activity in bone. Interestingly, it has been proved that miR-29 and miR-31-5p, acting on specific targets such as CALCR and RhoA, promote programmed-cell death and consequently the necrosis of bone tissue. Specific long non-coding RNAs, instead, have been detected both at reduced levels in patients with multiple myeloma and osteonecrosis, and associated with suppression of osteoblast differentiation, with consequences in the progression of mandible lesions. Among non-coding genic material, circular RNAs have the capability to modify the expression of specific mRNAs responsible for the inhibition of bisphosphonates activity on osteoclastogenesis.
Collapse
Affiliation(s)
- Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Fabio Stagno
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| |
Collapse
|