1
|
Natale G, Fini E, Calabrò PF, Carli M, Scarselli M, Bocci G. Valproate and lithium: Old drugs for new pharmacological approaches in brain tumors? Cancer Lett 2023; 560:216125. [PMID: 36914086 DOI: 10.1016/j.canlet.2023.216125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Beyond its use as an antiepileptic drug, over time valproate has been increasingly used for several other therapeutic applications. Among these, the antineoplastic effects of valproate have been assessed in several in vitro and in vivo preclinical studies, suggesting that this agent significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. During the last years various clinical trials have tried to find out if valproate co-administration could enhance the antineoplastic activity of chemotherapy in glioblastoma patients and in patients suffering from brain metastases, demonstrating that the inclusion of valproate in the therapeutic schedule causes an improved median overall survival in some studies, but not in others. Thus, the effects of the use of concomitant valproate in brain cancer patients are still controversial. Similarly, lithium has been tested as an anticancer drug in several preclinical studies mainly using the unregistered formulation of lithium chloride salts. Although, there are no data showing that the anticancer effects of lithium chloride are superimposable to the registered lithium carbonate, this formulation has shown preclinical activity in glioblastoma and hepatocellular cancers. However, few but interesting clinical trials have been performed with lithium carbonate on a very small number of cancer patients. Based on published data, valproate could represent a potential complementary therapeutic approach to enhance the anticancer activity of brain cancer standard chemotherapy. Same advantageous characteristics are less convincing for lithium carbonate. Therefore, the planning of specific phase III studies is necessary to validate the repositioning of these drugs in present and future oncological research.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy; Museum of Human Anatomy "Filippo Civinini", University of Pisa, Italy
| | - Elisabetta Fini
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
2
|
Huang Y, Rong Z, Zhang L, Xu Z, Ji J, He J, Liu W, Hou Y, Li K. HiRAND: A novel GCN semi-supervised deep learning-based framework for classification and feature selection in drug research and development. Front Oncol 2023; 13:1047556. [PMID: 36776339 PMCID: PMC9909422 DOI: 10.3389/fonc.2023.1047556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
The prediction of response to drugs before initiating therapy based on transcriptome data is a major challenge. However, identifying effective drug response label data costs time and resources. Methods available often predict poorly and fail to identify robust biomarkers due to the curse of dimensionality: high dimensionality and low sample size. Therefore, this necessitates the development of predictive models to effectively predict the response to drugs using limited labeled data while being interpretable. In this study, we report a novel Hierarchical Graph Random Neural Networks (HiRAND) framework to predict the drug response using transcriptome data of few labeled data and additional unlabeled data. HiRAND completes the information integration of the gene graph and sample graph by graph convolutional network (GCN). The innovation of our model is leveraging data augmentation strategy to solve the dilemma of limited labeled data and using consistency regularization to optimize the prediction consistency of unlabeled data across different data augmentations. The results showed that HiRAND achieved better performance than competitive methods in various prediction scenarios, including both simulation data and multiple drug response data. We found that the prediction ability of HiRAND in the drug vorinostat showed the best results across all 62 drugs. In addition, HiRAND was interpreted to identify the key genes most important to vorinostat response, highlighting critical roles for ribosomal protein-related genes in the response to histone deacetylase inhibition. Our HiRAND could be utilized as an efficient framework for improving the drug response prediction performance using few labeled data.
Collapse
Affiliation(s)
- Yue Huang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhiwei Rong
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Liuchao Zhang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhenyi Xu
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Jianxin Ji
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Jia He
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Weisha Liu
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Yan Hou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China,*Correspondence: Kang Li, ; Yan Hou,
| | - Kang Li
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China,*Correspondence: Kang Li, ; Yan Hou,
| |
Collapse
|
3
|
Zhao L, Liang Q, He Y, Liu M, Tong R, Jiang Z, Wang W, Shi J. HDAC/JAK dual target inhibitors of cancer-related targets: The success of nonclearable linked pharmacophore mode. Bioorg Chem 2022; 129:106181. [DOI: 10.1016/j.bioorg.2022.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
4
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M, Morelli C. From HDAC to Voltage-Gated Ion Channels: What's Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers (Basel) 2022; 14:cancers14184401. [PMID: 36139561 PMCID: PMC9497059 DOI: 10.3390/cancers14184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although in the last decades the clinical outcome of cancer patients considerably improved, the major drawbacks still associated with chemotherapy are the unwanted side effects and the development of drug resistance. Therefore, a continuous effort in trying to discover new tumor markers, possibly of diagnostic, prognostic and therapeutic value, is being made. This review is aimed at highlighting the anti-tumor activity that several antiepileptic drugs (AEDs) exert in breast, prostate and other types of cancers, mainly focusing on their ability to block the voltage-gated Na+ and Ca++ channels, as well as to inhibit the activity of histone deacetylases (HDACs), all well-documented tumor markers and/or molecular targets. The existence of additional AEDs molecular targets is highly suspected. Therefore, the repurposing of already available drugs as adjuvants in cancer treatment would have several advantages, such as reductions in dose-related toxicity CVs will be sent in a separate mail to the indicated address of combined treatments, lower production costs, and faster approval for clinical use. Abstract Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients’ outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed. This review will first give a glance on the diagnostic and therapeutic significance of histone deacetylase (HDAC) and voltage gated ion channels (VGICs) in cancer. Nevertheless, HDAC and VGICs have also been reported as molecular targets through which antiepileptic drugs (AEDs) seem to exert their anticancer activity. This should be claimed as a great advantage. Indeed, due to the slowness of drug approval procedures, the attempt to turn to off-label use of already approved medicines would be highly preferable. Therefore, an updated and accurate overview of both preclinical and clinical data of commonly prescribed AEDs (mainly valproic acid, lamotrigine, carbamazepine, phenytoin and gabapentin) in breast, prostate, brain and other cancers will follow. Finally, a glance at the emerging attempt to administer AEDs by means of opportunely designed drug delivery systems (DDSs), so to limit toxicity and improve bioavailability, is also given.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilena Lanzino
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| | - Catia Morelli
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| |
Collapse
|
5
|
Li F, Peng X, Zhou J, Chen Q, Chen Y. Aberrant MEK5 signalling promotes clear cell renal cell carcinoma development via mTOR activation. J Cancer Res Clin Oncol 2022; 148:3257-3266. [PMID: 35713705 DOI: 10.1007/s00432-022-04058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE This study was designed to evaluate the role and expression of MEK5 signalling in clear cell renal cell carcinoma (ccRCC) and to determine the relevance of MEK5 and mTOR signalling in ccRCC. METHODS The expression of MEK5 was compared between ccRCC and normal tissues using the ONCOMINE and TCGA databases. MEK5 expression was evaluated in 14 human ccRCC samples. CCK8, wound-healing, and clone formation assays were performed to examine the cell proliferation, migration, and clone formation abilities of ccRCC cells treated with MEK5 and the inhibitor BIX02189. Furthermore, Western blotting was performed to verify the regulation and influence of MEK5 on the mTOR signalling pathway. Finally, a murine subcutaneous tumour model was constructed, and the effect and safety of BIX02189 were evaluated in vivo. RESULTS The ONCOMINE and TCGA databases indicated that MEK5 expression in ccRCC was significantly higher than that in normal tissues, which was further confirmed in clinical specimens. MEK5 knockdown markedly inhibited ccRCC cell proliferation, colony formation, and migration, whereas MEK5 overexpression resulted in the opposite results. Western blotting revealed that overexpression of MEK5 could further activate the mTOR signalling pathway. Moreover, the MEK5 inhibitor BIX02189 significantly inhibited cell proliferation, arrested the cell cycle in the G0/G1 phase, induced apoptosis, and effectively inhibited cell migration and clone formation. BIX02189 also showed an excellent antitumor effect and a favourable safety profile in murine models. CONCLUSIONS MEK5 expression was aberrantly increased in ccRCC, which activated the mTOR signalling pathway and regulated cell proliferation, cell cycle progression, migration, and clone formation in ccRCC. Targeted inhibition of MEK5 represents a promising new strategy in patients with ccRCC.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China
| | - Xufeng Peng
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China
| | - Jiale Zhou
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China
| | - Qi Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China.
| | - Yonghui Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China.
| |
Collapse
|
6
|
Integrin α2 and β1 Cross-Communication with mTOR/AKT and the CDK-Cyclin Axis in Hepatocellular Carcinoma Cells. Cancers (Basel) 2022; 14:cancers14102430. [PMID: 35626034 PMCID: PMC9139686 DOI: 10.3390/cancers14102430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) progression depends on two major processes, tumor growth and invasion. The present study investigated how these events are linked. A panel of HCC cell lines were stimulated with insulin-like growth factor-1 (IGF1) and the biological behavior was evaluated. IGF1 activated the proliferation and invasion cascade by altering the expression level of integrin α subtypes, which were associated with the AKT-mTOR pathway and the CDK-Cyclin axis. We assume that HCC progression is controlled by a fine-tuned network between IGF1 driven integrin signaling, the Akt-mTOR pathway, and the CDK-Cyclin axis. Concerted targeting of these pathways may, therefore, become an innovative option to prevent cancer dissemination. Abstract Integrin receptors contribute to hepatocellular carcinoma (HCC) invasion, while AKT-mTOR signaling controls mitosis. The present study was designed to explore the links between integrins and the AKT-mTOR pathway and the CDK-Cyclin axis. HCC cell lines (HepG2, Huh7, Hep3B) were stimulated with soluble collagen or Matrigel to activate integrins, or with insulin-like growth factor 1 (IGF1) to activate AKT-mTOR. HCC growth, proliferation, adhesion, and chemotaxis were evaluated. AKT/mTOR-related proteins, proteins of the CDK-Cyclin axis, focal adhesion kinase (FAK), and integrin-linked kinase (ILK) were determined following IGF1-stimulation or integrin knockdown. Stimulation with collagen or Matrigel increased tumor cell growth and proliferation. This was associated with significant alteration of the integrins α2, αV, and β1. Blockade of these integrins led to cell cycle arrest in G2/M and diminished the number of tumor cell clones. Knocking down the integrins α2 or β1 suppressed ILK, reduced FAK-phosphorylation and diminished AKT/mTOR, as well as the proteins of the CDK-Cyclin axis. Activating the cells with IGF1 enhanced the expression of the integrins α2, αV, β1, activated FAK, and increased tumor cell adhesion and chemotaxis. Blocking the AKT pathway canceled the enhancing effect of IGF on the integrins α2 and β1. These findings reveal that HCC growth, proliferation, and invasion are controlled by a fine-tuned network between α2/β1-FAK signaling, the AKT-mTOR pathway, and the CDK–Cyclin axis. Concerted blockade of the integrin α2/β1 complex along with AKT-mTOR signaling could, therefore, provide an option to prevent progressive dissemination of HCC.
Collapse
|
7
|
Liang X, Tang S, Liu X, Liu Y, Xu Q, Wang X, Saidahmatov A, Li C, Wang J, Zhou Y, Zhang Y, Geng M, Huang M, Liu H. Discovery of Novel Pyrrolo[2,3- d]pyrimidine-based Derivatives as Potent JAK/HDAC Dual Inhibitors for the Treatment of Refractory Solid Tumors. J Med Chem 2022; 65:1243-1264. [PMID: 33586434 DOI: 10.1021/acs.jmedchem.0c02111] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It remains a big challenge to develop HDAC inhibitors effective for solid tumors. Previous studies have suggested that the feedback activation of JAK-STAT3 pathway represents a key mechanism leading to resistance to HDAC inhibitors in breast cancer, suggesting the therapeutic promise of JAK/HDAC dual inhibitors. In this work, we discovered a series of pyrrolo[2,3-d]pyrimidine-based derivatives as potent JAK and HDAC dual inhibitors. Especially, compounds 15d and 15h potently inhibited JAK1/2/3 and HDAC1/6 and displayed antiproliferative and proapoptotic activities in triple-negative breast cancer cell lines. Besides, compounds 15d and 15h also diminished the activation of LIFR-JAK-STAT signaling triggered by tumor-associated fibroblasts, which suggests that these compounds could potentially overcome the drug resistance caused by the tumor microenvironment. More importantly, compound 15d effectively inhibited the tumor growth in MDA-MB-231 xenograft tumor model. Overall, this work provides valuable leads and novel antitumor mechanisms for the treatment of the SAHA-resistant triple-negative breast cancers.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xuyi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qifu Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji'nan, Shandong 250012, P. R. China
| | - Xiaomin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji'nan, Shandong 250012, P. R. China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
8
|
Wawruszak A, Borkiewicz L, Okon E, Kukula-Koch W, Afshan S, Halasa M. Vorinostat (SAHA) and Breast Cancer: An Overview. Cancers (Basel) 2021; 13:4700. [PMID: 34572928 PMCID: PMC8468501 DOI: 10.3390/cancers13184700] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Vorinostat (SAHA), an inhibitor of class I and II of histone deacetylases, is the first histone deacetylase inhibitor (HDI) approved for the treatment of cutaneous T-cell lymphoma in 2006. HDIs are promising anticancer agents that inhibit the proliferation of many types of cancer cells including breast carcinoma (BC). BC is a heterogeneous disease with variable biological behavior, morphological features, and response to therapy. Although significant progress in the treatment of BC has been made, high toxicity to normal cells, serious side effects, and the occurrence of multi-drug resistance limit the effective therapy of BC patients. Therefore, new active agents which improve the effectiveness of currently used regimens are highly needed. This manuscript analyzes preclinical and clinical trials data of SAHA, applied individually or in combination with other anticancer agents, considering different histological subtypes of BC.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20521 Turku, Finland;
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| |
Collapse
|
9
|
α 3 integrin-binding peptide-functionalized polymersomes loaded with volasertib for dually-targeted molecular therapy for ovarian cancer. Acta Biomater 2021; 124:348-357. [PMID: 33561562 DOI: 10.1016/j.actbio.2021.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Ovarian cancer (OC) is a high-mortality malignancy in women with a five-year survival rate of 30-40%. There is an urgent need to develop high-efficacy and low toxic treatments for OC. Herein, we report an appealing strategy that combines α3 integrin targeted polymersomes (A3-Ps) and targeted molecular drug, polo-like kinase 1 (PLK1) inhibitor volasertib (Vol) for dually targeted molecular therapy of OC in vivo. A3-Ps had good Vol loading of 7.7-8.0 wt.% and small size of 25-32 nm, depending on the density of α3 integrin binding peptide A3. Interestingly, cellular uptake studies using FITC-labeled Vol revealed that A3-Ps with 20% peptide gave 2.3 and 3.3-fold better internalization in SKOV-3 OC cells compared with non-targeted Ps and free Vol, respectively. Accordingly, Vol loaded in A3-Ps showed the best inhibitory activity to SKOV-3 cells with an IC50 of 49 nM, which was 3.5 times lower than free Vol. Importantly, the in vivo experiments demonstrated that A3-Ps-Vol proficiently repressed the growth of SKOV-3 tumors in mice while continuous tumor growth was observed for Ps-Vol and free Vol-treated mice. A3-Ps-Vol besides boosting anti-OC activity also reduced the systemic toxicity of Vol. This dually targeted molecular drug nanoformulation has appeared to be an especially potent and low toxic treatment modality for human ovarian cancers. STATEMENT OF SIGNIFICANCE: Volasertib provides a potential molecular therapy for PLK1-positive advanced OC patients. The initial clinical outcomes, nevertheless, showed a suboptimal efficacy, possibly resulting from its fast clearance, deficient tumor deposition and dose-limiting toxicities. Here, we show for the first time that dually targeted molecular therapy of OC using α3 integrin-binding peptide-modified polymersomes as a vehicle gives markedly improved potency, better toleration, and depleted adverse effects in SKOV-3 tumor models, greatly outperforming free volasertib. This dually targeted strategy has emerged as an appealing treatment for malignant PLK1-positive ovarian tumors.
Collapse
|
10
|
Pang B, Zhang J, Zhang X, Yuan J, Shi Y, Qiao L. Inhibition of lipogenesis and induction of apoptosis by valproic acid in prostate cancer cells via the C/EBPα/SREBP-1 pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:354-364. [PMID: 33471067 DOI: 10.1093/abbs/gmab002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism reprogramming is now accepted as a new hallmark of cancer. Hence, targeting the lipogenesis pathway may be a potential avenue for cancer treatment. Valproic acid (VPA) emerges as a promising drug for cancer therapy; however, the underlying mechanisms are not yet fully understood. In this study, we aimed to investigate the effects and mechanisms of VPA on cell viability, lipogenesis, and apoptosis in human prostate cancer PC-3 and LNCaP cells. The results showed that VPA significantly reduced lipid accumulation and induced apoptosis of PC-3 and LNCaP cells. Moreover, the expression of CCAAT/enhancer-binding protein α (C/EBPα), as well as sterol regulatory element-binding protein 1 (SREBP-1) and its downstream effectors, including fatty acid synthase (FASN), acetyl CoA carboxylase 1 (ACC1), and anti-apoptotic B-cell lymphoma 2 (Bcl-2), was markedly decreased in PC-3 and LNCaP cells after VPA administration. Mechanistically, the overexpression of C/EBPα rescued the levels of SREBP-1, FASN, ACC1, and Bcl-2, enhanced lipid accumulation, and attenuated apoptosis of VPA-treated PC-3 cells. Conversely, knockdown of C/EBPα by siRNA further decreased lipid accumulation, enhanced apoptosis, and reduced the levels of SREBP-1, FASN, ACC1, and Bcl-2. In addition, SREBP-1a and 1c enhanced the expressions of FASN and ACC1, but only SREBP-1a had a significant effect on Bcl-2 expression in VPA-treated PC-3 cells. Based on the results, we concluded that VPA significantly inhibits cell viability via decreasing lipogenesis and inducing apoptosis via the C/EBPα/SREBP-1 pathway in prostate cancer cells. Therefore, VPA that targets lipid metabolism and apoptosis is a promising candidate for PCa chemotherapy.
Collapse
Affiliation(s)
- Bo Pang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Juanjuan Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Xi Zhang
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Jihong Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Yanan Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Ling Qiao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
11
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
12
|
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a central regulator for human physiological activity. Deregulated mTOR signaling is implicated in a variety of disorders, such as cancer, obesity, diabetes, and neurodegenerative diseases. The papers published in this special issue summarize the current understanding of the mTOR pathway and its role in the regulation of tissue regeneration, regulatory T cell differentiation and function, and different types of cancer including hematologic malignancies, skin, prostate, breast, and head and neck cancer. The findings highlight that targeting the mTOR pathway is a promising strategy to fight against certain human diseases.
Collapse
|
13
|
Xu Z, Han X, Ou D, Liu T, Li Z, Jiang G, Liu J, Zhang J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol 2019; 104:575-587. [PMID: 31832711 DOI: 10.1007/s00253-019-10257-8] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Autophagy is a highly conserved catabolic process and participates in a variety of cellular biological activities. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, as a critical regulator of autophagy, is involved in the initiation and promotion of a series of pathological disorders including various tumors. Autophagy also participates in regulating the balance between the tumor and the tumor microenvironment. Natural products have been considered a treasure of new drug discoveries and are of great value to medicine. Mounting evidence has suggested that numerous natural products are targeting PI3K/AKT/mTOR-mediated autophagy, thereby suppressing tumor growth. Furthermore, autophagy plays a "double-edged sword" role in different tumors. Targeting PI3K/AKT/mTOR-mediated autophagy is an important therapeutic strategy for a variety of tumors, and plays important roles in enhancing the chemosensitivity of tumor cells and avoiding drug resistance. Therefore, we summarized the roles of PI3K/AKT/mTOR-mediated autophagy in tumorigenesis, progression, and drug resistance of tumors, which may be utilized to design preferably therapeutic strategies for various tumors.
Collapse
Affiliation(s)
- Zhenru Xu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Daming Ou
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Liu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zunxiong Li
- University of South China, Hengyang, Hunan, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| |
Collapse
|
14
|
Hassell KN. Histone Deacetylases and their Inhibitors in Cancer Epigenetics. Diseases 2019; 7:diseases7040057. [PMID: 31683808 PMCID: PMC6955926 DOI: 10.3390/diseases7040057] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDAC) and histone deacetylase inhibitors (HDACi) have greatly impacted the war on cancer. Their role in epigenetics has significantly altered the development of anticancer drugs used to treat the most rare, persistent forms of cancer. During transcription, HDAC and HDACi are used to regulate the genetic mutations found in cancerous cells by removing and/or preventing the removal of the acetyl group on specific histones. This activity determines the relaxed or condensed conformation of the nucleosome, changing the accessibility zones for transcription factors. These modifications lead to other biological processes for the cell, including cell cycle progression, proliferation, and differentiation. Each HDAC and HDACi class or group has a distinctive mechanism of action that can be utilized to halt the progression of cancerous cell growth. While the use of HDAC- and HDACi-derived compounds are relatively new in treatment of cancers, they have a proven efficacy when the appropriately utilized. This following manuscript highlights the mechanisms of action utilized by HDAC and HDACi in various cancer, their role in epigenetics, current drug manufacturers, and the impact predicative modeling systems have on cancer therapeutic drug discovery.
Collapse
Affiliation(s)
- Kelly N Hassell
- Department of Biology, College of St. Elizabeth, Morristown, NJ 07960, USA.
| |
Collapse
|
15
|
Juengel E, Natsheh I, Najafi R, Rutz J, Tsaur I, Haferkamp A, Chun FKH, Blaheta RA. Mechanisms behind Temsirolimus Resistance Causing Reactivated Growth and Invasive Behavior of Bladder Cancer Cells In Vitro. Cancers (Basel) 2019; 11:cancers11060777. [PMID: 31167517 PMCID: PMC6627393 DOI: 10.3390/cancers11060777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Although mechanistic target of rapamycin (mTOR) inhibitors, such as temsirolimus, show promise in treating bladder cancer, acquired resistance often hampers efficacy. This study evaluates mechanisms leading to resistance. Methods: Cell growth, proliferation, cell cycle phases, and cell cycle regulating proteins were compared in temsirolimus resistant (res) and sensitive (parental—par) RT112 and UMUC3 bladder cancer cells. To evaluate invasive behavior, adhesion to vascular endothelium or to immobilized extracellular matrix proteins and chemotactic activity were examined. Integrin α and β subtypes were analyzed and blocking was done to evaluate physiologic integrin relevance. Results: Growth of RT112res could no longer be restrained by temsirolimus and was even enhanced in UMUC3res, accompanied by accumulation in the S- and G2/M-phase. Proteins of the cdk-cyclin and Akt-mTOR axis increased, whereas p19, p27, p53, and p73 decreased in resistant cells treated with low-dosed temsirolimus. Chemotactic activity of RT112res/UMUC3res was elevated following temsirolimus re-exposure, along with significant integrin α2, α3, and β1 alterations. Blocking revealed a functional switch of the integrins, driving the resistant cells from being adhesive to being highly motile. Conclusion: Temsirolimus resistance is associated with reactivation of bladder cancer growth and invasive behavior. The α2, α3, and β1 integrins could be attractive treatment targets to hinder temsirolimus resistance.
Collapse
Affiliation(s)
- Eva Juengel
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Iyad Natsheh
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Salt 13110, Jordan.
| | - Ramin Najafi
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Jochen Rutz
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Felix K-H Chun
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Roman A Blaheta
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Makarević J, Rutz J, Juengel E, Maxeiner S, Tsaur I, Chun FKH, Bereiter-Hahn J, Blaheta RA. Influence of the HDAC Inhibitor Valproic Acid on the Growth and Proliferation of Temsirolimus-Resistant Prostate Cancer Cells In Vitro. Cancers (Basel) 2019; 11:cancers11040566. [PMID: 31010254 PMCID: PMC6520872 DOI: 10.3390/cancers11040566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is elevated in prostate cancer, making this protein attractive for tumor treatment. Unfortunately, resistance towards mTOR inhibitors develops and the tumor becomes reactivated. We determined whether epigenetic modulation by the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), may counteract non-responsiveness to the mTOR inhibitor, temsirolimus, in prostate cancer (PCa) cells. Prostate cancer cells, sensitive (parental) and resistant to temsirolimus, were exposed to VPA, and tumor cell growth behavior compared. Temsirolimus resistance enhanced the number of tumor cells in the G2/M-phase, correlating with elevated cell proliferation and clonal growth. The cell cycling proteins cdk1 and cyclin B, along with Akt-mTOR signaling increased, whereas p19, p21 and p27 decreased, compared to the parental cells. VPA significantly reduced cell growth and up-regulated the acetylated histones H3 and H4. Cdk1 and cyclin B decreased, as did phosphorylated mTOR and the mTOR sub-complex Raptor. The mTOR sub-member Rictor and phosphorylated Akt increased under VPA. Knockdown of cdk1, cyclin B, or Raptor led to significant cell growth reduction. HDAC inhibition through VPA counteracts temsirolimus resistance, probably by down-regulating cdk1, cyclin B and Raptor. Enhanced Rictor and Akt, however, may represent an undesired feedback loop, which should be considered when designing future therapeutic regimens.
Collapse
Affiliation(s)
- Jasmina Makarević
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Jochen Rutz
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Eva Juengel
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Sebastian Maxeiner
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Igor Tsaur
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Felix K-H Chun
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Roman A Blaheta
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Chiarini F, Evangelisti C, Lattanzi G, McCubrey JA, Martelli AM. Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1322-1337. [PMID: 30928610 DOI: 10.1016/j.bbamcr.2019.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
The development of drug-resistance by neoplastic cells is recognized as a major cause of targeted therapy failure and disease progression. The mechanistic (previously mammalian) target of rapamycin (mTOR) is a highly conserved Ser/Thr kinase that acts as the catalytic subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. Both mTORC1 and mTORC2 play key roles in a variety of healthy cell types/tissues by regulating physiological anabolic and catabolic processes in response to external cues. However, a body of evidence identified aberrant activation of mTOR signaling as a common event in many human tumors. Therefore, mTOR is an attractive target for therapeutic targeting in cancer and this fact has driven the development of numerous mTOR inhibitors, several of which have progressed to clinical trials. Nevertheless, mTOR inhibitors have met with a very limited success as anticancer therapeutics. Among other reasons, this failure was initially ascribed to the activation of several compensatory signaling pathways that dampen the efficacy of mTOR inhibitors. The discovery of these regulatory feedback mechanisms greatly contributed to a better understanding of cancer cell resistance to mTOR targeting agents. However, over the last few years, other mechanisms of resistance have emerged, including epigenetic alterations, compensatory metabolism rewiring and the occurrence of mTOR mutations. In this article, we provide the reader with an updated overview of the mechanisms that could explain resistance of cancer cells to the various classes of mTOR inhibitors.
Collapse
Affiliation(s)
- Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
18
|
Beyens M, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Resistance to targeted treatment of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2019; 26:R109-R130. [PMID: 32022503 DOI: 10.1530/erc-18-0420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) is part of the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mTOR signaling. The PI3K/Akt/mTOR pathway has a pivotal role in the oncogenesis of neuroendocrine tumors (NETs). In addition, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) drive angiogenesis in NETs and therefore contributes to neuroendocrine tumor development. Hence, mTOR and angiogenesis inhibitors have been developed. Everolimus, a first-generation mTOR inhibitor, has shown significant survival benefit in advanced gastroenteropancreatic NETs. Sunitinib, a pan-tyrosine kinase inhibitor that targets the VEGF receptor, has proven to increase progression-free survival in advanced pancreatic NETs. Nevertheless, primary and acquired resistance to rapalogs and sunitinib has limited the clinical benefit for NET patients. Despite the identification of multiple molecular mechanisms of resistance, no predictive biomarker has made it to the clinic. This review is focused on the mTOR signaling and angiogenesis in NET, the molecular mechanisms of primary and acquired resistance to everolimus and sunitinib and how to overcome this resistance by alternative drug compounds.
Collapse
Affiliation(s)
- Matthias Beyens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Timon Vandamme
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marc Peeters
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| |
Collapse
|