1
|
Lin BQ, Chen F, Gu L, Wu ZX, Ye J, Zhang L, Huang BJ, Yu ZY, Lai GX, Lan XP, Zhao H, Liu W. CDT1, transcriptionally regulated by E2F2, promotes lung adenocarcinoma progression. Heliyon 2024; 10:e36557. [PMID: 39262963 PMCID: PMC11388403 DOI: 10.1016/j.heliyon.2024.e36557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
CDT1, a gene that shows excessive expression in various malignancies, functions as a pivotal regulator of replication licensing. In this study, we observed a positive correlation in expression between CDT1 and E2F2 among patients with lung adenocarcinoma (LUAD). Our findings substantiated that E2F2 directly interacted with the promoter region of CDT1, as confirmed by ChIP-qPCR assays, and depletion of E2F2 resulted in a downregulation of CDT1 expression in LUAD cell lines by gene interference technology. Furthermore, we identified an upregulation of CDT1 mRNA level in Chinese LUAD samples. Notably, in the loss-of-function assays, depletion of CDT1 in LUAD cell lines inhibited cell proliferation, migration, and invasion. Concurrently, it promoted cell apoptosis and induced G0/G1 phase arrest using MTT, flow cytometry, and Transwell assays, reinforcing its role as an oncogene.Furthermore, enhanced tumor ablation was determined in a CDT1-downregulated LUAD tumor-bearing nude mouse model. Collectively, our results strongly suggest that E2F2 positively regulates CDT1 expression and actively participates in the progression of lung adenocarcinoma, thereby providing valuable insights into identifying novel therapeutic targets for LUAD treatment.
Collapse
Affiliation(s)
- Bao-Quan Lin
- Cardio-Thoracic Surgery Department, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army, Fuzhou, Fujian, 350025, China
| | - Feng Chen
- Fuzong Teaching Hospital of Fujian University of Traditional Chinese Medicine (The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army), Fuzhou, Fujian, 350025, China
| | - Lei Gu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zai-Xin Wu
- Medical Service Management Office, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army, Fuzhou, Fujian, 350025, China
| | - Jia Ye
- Department of Respiratory and Critical Care Medicine, Fuzong Teaching Hospital of Fujian University of Traditional Chinese Medicine (The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army), Fuzhou, Fujian, 350025, China
- Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army, Fuzhou, Fujian, 350025, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Fuzong Teaching Hospital of Fujian University of Traditional Chinese Medicine (The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army), Fuzhou, Fujian, 350025, China
- Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army, Fuzhou, Fujian, 350025, China
| | - Bing-Jing Huang
- Department of Respiratory and Critical Care Medicine, Xiamen Haicang Hospital, No. 89 Haiyu Road, Xiamen, Fujian, 361026, China
| | - Zong-Yang Yu
- Department of Respiratory and Critical Care Medicine, Fuzong Teaching Hospital of Fujian University of Traditional Chinese Medicine (The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army), Fuzhou, Fujian, 350025, China
- Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army, Fuzhou, Fujian, 350025, China
| | - Guo-Xiang Lai
- Department of Respiratory and Critical Care Medicine, Fuzong Teaching Hospital of Fujian University of Traditional Chinese Medicine (The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army), Fuzhou, Fujian, 350025, China
- Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army, Fuzhou, Fujian, 350025, China
| | - Xiao-Peng Lan
- Institute for Laboratory Medicine, The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army, Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Hu Zhao
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, China
- Department of General Surgery, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Fuzong Teaching Hospital of Fujian University of Traditional Chinese Medicine (The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army), Fuzhou, Fujian, 350025, China
- Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the Joint Logistic Support Force, People's Liberation Army, Fuzhou, Fujian, 350025, China
| |
Collapse
|
2
|
Nesmith T, Vieira C, Rackus DG, Gupta GD. An electroporation cytometry system for long-term, live cell cycle analysis. BIOMICROFLUIDICS 2024; 18:044105. [PMID: 39219593 PMCID: PMC11364459 DOI: 10.1063/5.0204837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
Electric fields are used in biology to address a broad range of questions and through a variety of techniques, including electroporation, gene electrotransfer (GET), electrostimulation (ES), and electrochemotherapy. Each of these modalities requires specific conditions and has drastically different target outcomes on the cell. ES has demonstrated that non-pore forming electric fields alter cell cycle progression. However, pore forming electric fields such as with GET have not been as widely explored despite major clinical advancements. Additionally, the real-time visual analysis of electrical field effects on mammalian cell culture is currently lacking among most commercial systems. To facilitate investigations into these research areas, an electroporation cytometry system was developed including a custom chamber compatible with live cell imaging and exponential decay pulse generator for live cell analysis. The functionality of the system was demonstrated using a recombinant cell line using U-2 OS cells and FUCCI(CA)5 cell cycle reporter. The exposure of the cells to a 180 V pulse in both unsynchronized and synchronized populations revealed an effect on the cell cycle.
Collapse
Affiliation(s)
| | - Christian Vieira
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | | | - Gagan D. Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
3
|
Arendzen CH, Cramer SJ, Freund CMAH, Mummery CL, Ranga A, Mikkers HMM. Introduction of a Geminin mScarlet Reporter into H2B-mTurq2 hiPSCs for Live-cell Imaging of Proliferation and Cell Cycling. Stem Cell Res 2023; 67:103031. [PMID: 36702081 DOI: 10.1016/j.scr.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
We previously generated a doxycycline-inducible H2B-mTurq2 reporter in hiPSCs to track cells and study cell division and apoptosis. To improve visualization of cycling cells, we introduced a ubiquitously transcribed mScarletI-Geminin (GMMN) (1-110) into the previously untargeted second AAVS1 allele. Fusion to the N-terminal part of GMNN provided tightly controlled mScarletI expression during the cell cycle. mScarletI fluorescence increased gradually from the S-phase through the M-phase of the cell cycle and was lost at the metaphase-anaphase transition. The resulting hiPSC reporter line generated, which we named ProLiving, is a valuable tool to study cell division and cell cycle characteristics in living hiPSC-derived cells.
Collapse
Affiliation(s)
- C H Arendzen
- LUMC hiPSC Hotel, Leiden University Medical Center, The Netherlands; Dept of Anatomy and Embryology, Leiden University Medical Center, The Netherlands.
| | - S J Cramer
- Dept of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - C M A H Freund
- LUMC hiPSC Hotel, Leiden University Medical Center, The Netherlands; Dept of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - C L Mummery
- LUMC hiPSC Hotel, Leiden University Medical Center, The Netherlands; Dept of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - A Ranga
- Dept of Biomechanics, KU Leuven, Belgium
| | - H M M Mikkers
- LUMC hiPSC Hotel, Leiden University Medical Center, The Netherlands; Dept of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
4
|
Martín-Rufo R, de la Vega-Barranco G, Lecona E. Ubiquitin and SUMO as timers during DNA replication. Semin Cell Dev Biol 2022; 132:62-73. [PMID: 35210137 DOI: 10.1016/j.semcdb.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.
Collapse
Affiliation(s)
- Rodrigo Martín-Rufo
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
5
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
6
|
Dubey AR, Jagtap YA, Kumar P, Patwa SM, Kinger S, Kumar A, Singh S, Prasad A, Jana NR, Mishra A. Biochemical strategies of E3 ubiquitin ligases target viruses in critical diseases. J Cell Biochem 2021; 123:161-182. [PMID: 34520596 DOI: 10.1002/jcb.30143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Viruses are known to cause various diseases in human and also infect other species such as animal plants, fungi, and bacteria. Replication of viruses depends upon their interaction with hosts. Human cells are prone to such unwanted viral infections. Disintegration and reconstitution require host machinery and various macromolecules like DNA, RNA, and proteins are invaded by viral particles. E3 ubiquitin ligases are known for their specific function, that is, recognition of their respective substrates for intracellular degradation. Still, we do not understand how ubiquitin proteasome system-based enzymes E3 ubiquitin ligases do their functional interaction with different viruses. Whether E3 ubiquitin ligases help in the elimination of viral components or viruses utilize their molecular capabilities in their intracellular propagation is not clear. The first time our current article comprehends fundamental concepts and new insights on the different viruses and their interaction with various E3 Ubiquitin Ligases. In this review, we highlight the molecular pathomechanism of viruses linked with E3 Ubiquitin Ligases dependent mechanisms. An enhanced understanding of E3 Ubiquitin Ligase-mediated removal of viral proteins may open new therapeutic strategies against viral infections.
Collapse
Affiliation(s)
- Ankur R Dubey
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj A Jagtap
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Som M Patwa
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sarika Singh
- Department of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Nihar R Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Mishra
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
7
|
Tian J, Lu Z, Niu S, Zhang S, Ying P, Wang L, Zhang M, Cai Y, Dong T, Zhu Y, Zhong R, Wang Z, Chang J, Miao X. Aberrant MCM10 SUMOylation induces genomic instability mediated by a genetic variant associated with survival of esophageal squamous cell carcinoma. Clin Transl Med 2021; 11:e485. [PMID: 34185429 PMCID: PMC8236122 DOI: 10.1002/ctm2.485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the common gastrointestinal malignancy with an inferior prognosis outcome. DNA replication licensing aberration induced by dysregulation of minichromosome maintenance proteins (MCMs) causes genomic instability and cancer metastasis. SUMOylation modification plays a pivotal role in regulation of genomic integrity, while its dysregulation fueled by preexisting germline variants in cancers remains poorly understood. METHODS Firstly, we conducted two-stage survival analysis consisting of an exome-wide association study in 904 ESCC samples and another independent 503 ESCC samples. Then, multipronged functional experiments were performed to illuminate the potential biological mechanisms underlying the promising variants, and MCM10 influences the ESCC progression. Finally, we tested the effects of MCM10 inhibitors on ESCC cells. RESULTS A germline variant rs2274110 located at the exon 15 of MCM10 was identified to be significantly associated with the prognosis of ESCC patients. Individuals carrying rs2274110-AA genotypes confer a poor survival (hazard ratio = 1.61, 95% confidence interval = 1.35-1.93, p = 1.35 × 10-7 ), compared with subjects carrying rs2274110-AG/GG genotypes. Furthermore, we interestingly found that the variant can increase SUMOylation levels at K669 site (Lys[K]699Arg[R]) of MCM10 protein mediated by SUMO2/3 enzymes, which resulted in an aberrant overexpression of MCM10. Mechanistically, aberrant overexpression of MCM10 facilitated the proliferation and metastasis abilities of ESCC cells in vitro and in vivo by inducing DNA over-replication and genomic instability, providing functional evidence to support our population finding that high expression of MCM10 is extensively presented in tumor tissues of ESCC and correlated with inferior survival outcomes of multiple cancer types, including ESCC. Finally, MCM10 inhibitors Suramin and its analogues were revealed to effectively block the metastasis of ESCC cells. CONCLUSIONS These findings not only demonstrate a potential biological mechanism between aberrant SUMOylation, genomic instability and cancer metastasis, but also provide a promising biomarker aiding in stratifying ESCC individuals with different prognosis, as well as a potential therapeutic target MCM10.
Collapse
Affiliation(s)
- Jianbo Tian
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Zequn Lu
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Siyuan Niu
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Shanshan Zhang
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Pingting Ying
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Lu Wang
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Ming Zhang
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Yimin Cai
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Tianyi Dong
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Ying Zhu
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Rong Zhong
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Zhihua Wang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiang Chang
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Xiaoping Miao
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| |
Collapse
|
8
|
Traver G, Sekhar KR, Crooks PA, Keeney DS, Freeman ML. Targeting NPM1 in irradiated cells inhibits NPM1 binding to RAD51, RAD51 foci formation and radiosensitizes NSCLC. Cancer Lett 2020; 500:220-227. [PMID: 33358698 PMCID: PMC7822076 DOI: 10.1016/j.canlet.2020.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
The ability of chemo-radiation therapy to control locally advanced stage III non-small cell lung cancer (NSCLC) is poor. While addition of consolidation immunotherapy has improved outcomes in subsets of patients there is still an urgent need for new therapeutic targets. Emerging research indicates that nucleophosmin1 (NPM1) is over-expressed in NSCLC, promotes tumor growth and that over-expression correlates with a lower survival probability. NPM1 is critical for APE1 base excision activity and for RAD51-mediated repair of DNA double strand breaks (DSBs). YTR107 is a small molecule radiation sensitizer that has been shown to bind to NPM1, suppressing pentamer formation. Here we show that in irradiated cells YTR107 inhibits SUMOylated NPM1 from associating with RAD51, RAD51 foci formation and repair of DSBs. YTR107 acts synergistically with the PARP1/2 inhibitor ABT 888 to increase replication stress and radiation-induced cell lethality. YTR107 was found to radiosensitize tumor initiating cells. Congruent with this knowledge, adding YTR107 to a fractionated irradiation regimen diminished NSCLC xenograft growth and increased overall survival. These data support the hypothesis that YTR107 represents a therapeutic target for control of NSCLC.
Collapse
MESH Headings
- Barbiturates/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Breaks, Double-Stranded/radiation effects
- DNA Repair/drug effects
- DNA Repair/radiation effects
- DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics
- Humans
- Indoles/pharmacology
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/radiotherapy
- Nuclear Proteins/genetics
- Nucleophosmin
- Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors
- Poly (ADP-Ribose) Polymerase-1/genetics
- Rad51 Recombinase/genetics
- Radiation Tolerance/drug effects
- Radiation-Sensitizing Agents/pharmacology
- Sumoylation/drug effects
- Sumoylation/radiation effects
Collapse
Affiliation(s)
- Geri Traver
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Konjeti R Sekhar
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR72205, USA
| | - Diane S Keeney
- Cumberland Emerging Technologies, Inc., 2525 West End Ave, Suite 950, Nashville, TN, 37203-1608, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Hsu RYC, Giri S, Wang Y, Lin YC, Liu D, Wopat S, Chakraborty A, Prasanth KV, Prasanth SG. The E3 ligase RFWD3 stabilizes ORC in a p53-dependent manner. Cell Cycle 2020; 19:2927-2938. [PMID: 33044890 DOI: 10.1080/15384101.2020.1829823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RFWD3 is an E3 ubiquitin ligase that plays important roles in DNA damage response and DNA replication. We have previously demonstrated that the stabilization of RFWD3 by PCNA at the replication fork enables ubiquitination of the single-stranded binding protein, RPA and its subsequent degradation for replication progression. Here, we report that RFWD3 associates with the Origin Recognition Complex (ORC) and ORC-Associated (ORCA/LRWD1), components of the pre-replicative complex required for the initiation of DNA replication. Overexpression of ORC/ORCA leads to the stabilization of RFWD3. Interestingly, RFWD3 seems to stabilize ORC/ORCA in cells expressing wild type p53, as the depletion of RFWD3 reduces the levels of ORC/ORCA. Further, the catalytic activity of RFWD3 is required for the stabilization of ORC. Our results indicate that the RFWD3 promotes the stability of ORC, enabling efficient pre-RC assembly.
Collapse
Affiliation(s)
- Rosaline Y C Hsu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Sumanprava Giri
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Yating Wang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Dazhen Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Susan Wopat
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Arindam Chakraborty
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| |
Collapse
|
10
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
McHugh A, Fernandes K, Chinner N, Ibrahim AFM, Garg AK, Boag G, Hepburn LA, Proby CM, Leigh IM, Saville MK. The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 140:1154-1165.e5. [PMID: 31705877 PMCID: PMC7254059 DOI: 10.1016/j.jid.2019.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
We performed a small interfering RNA screen to identify targets for cutaneous squamous cell carcinoma (cSCC) therapy in the ubiquitin/ubiquitin-like system. We provide evidence for selective anti-cSCC activity of knockdown of the E3 ubiquitin ligase MARCH4, the ATPase p97/VCP, the deubiquitinating enzyme USP8, the cullin-RING ligase (CRL) 4 substrate receptor CDT2/DTL, and components of the anaphase-promoting complex/cyclosome (APC/C). Specifically attenuating CRL4CDT2 by CDT2 knockdown can be more potent in killing cSCC cells than targeting CRLs or CRL4s in general by RBX1 or DDB1 depletion. Suppression of the APC/C or forced APC/C activation by targeting its repressor EMI1 are both potential therapeutic approaches. We observed that cSCC cells can be selectively killed by small-molecule inhibitors of USP8 (DUBs-IN-3/compound 22c) and the NEDD8 E1 activating enzyme/CRLs (MLN4924/pevonedistat). A substantial proportion of cSCC cell lines are very highly MLN4924-sensitive. Pathways that respond to defects in proteostasis are involved in the anti-cSCC activity of p97 suppression. Targeting USP8 can reduce the expression of growth factor receptors that participate in cSCC development. EMI1 and CDT2 depletion can selectively cause DNA re-replication and DNA damage in cSCC cells.
Collapse
Affiliation(s)
- Angela McHugh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Kenneth Fernandes
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Nerime Chinner
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Adel F M Ibrahim
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Amit K Garg
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Garry Boag
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Lydia A Hepburn
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom; Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Irene M Leigh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom; Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mark K Saville
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
12
|
Abstract
DNA replication starts with the opening of DNA at sites called DNA replication origins. From the single sequence-specific DNA replication origin of the small Escherichia coli genome, up to thousands of origins that are necessary to replicate the large human genome, strict sequence specificity has been lost. Nevertheless, genome-wide analyses performed in the recent years, using different mapping methods, demonstrated that there are precise locations along the metazoan genome from which replication initiates. These sites contain relaxed sequence consensus and epigenetic features. There is flexibility in the choice of origins to be used during a given cell cycle, probably imposed by evolution and developmental constraints. Here, we will briefly describe their main features.
Collapse
|