1
|
Akinbi GO, Lin Q, Fiola TE, Rathore RS, Badisa VLD, Mwashote B, Chen G, Ibeanusi V. Ecosystem assessment to support innovative advancements in soil sustainability in the major land resource areas of Mississippi through geochemical and metagenomics studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36490-5. [PMID: 40347421 DOI: 10.1007/s11356-025-36490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
In the present study, the ecosystem of Roebuck (RF) and Nesbit blueberry plantation (NBP) farms in Mississippi state, USA that differed by type of fertilizer treatment was assessed using soil samples through geophysical-chemical parameters and metagenomics studies. Soil geophysical-chemical parameters such as pH, moisture, organic content, nutrients, and toxic metal concentrations were measured. Metagenomic analysis was performed to identify the bacterial communities in the soil samples. The results revealed that the pH of the NBP farm (organic fertilizer) was lower than that of the RF farm (chemical fertilizer). The NBP soil samples exhibited higher moisture and organic contents than the RF soil samples. The tested heavy metal concentrations in both farm soil samples were within the limits recommended by the EPA (United States Environmental Protection Agency). Different concentrations of nutrients were observed between these two farms soil samples. RF soil indicated greater species richness and a more balanced distribution of species abundances. Proteobacteria, Bacteroidota, and Actinobacteriota were the most abundant phyla observed in RF soil, whereas Proteobacteria, Acidobacteriota, and Actinobacteriota were the most abundant phyla observed in NBP soil. This study clearly demonstrated the effects of fertilizer type on the soil through variations in geophysical-chemical parameters, which subsequently changed the microbial communities. This study suggests that organic fertilizer application could be an effective method for sustainable soil quality as the organic fertilized soils exhibited higher moisture and organic content that promotes plant growth.
Collapse
Affiliation(s)
| | - Qi Lin
- FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | | | - Rajesh Singh Rathore
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | | | - Benjamin Mwashote
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Gang Chen
- FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Victor Ibeanusi
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| |
Collapse
|
2
|
Agarwal M, Sheikh MB. Isolation and Functional Characterization of Endophytic Bacteria from Muscadine Grape Berries: A Microbial Treasure Trove. Cells 2025; 14:369. [PMID: 40072097 PMCID: PMC11899604 DOI: 10.3390/cells14050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Muscadine grapes are renowned for their unique traits, natural disease resistance, and rich bioactive compounds. Despite extensive research on their phytochemical properties, microbial communities, particularly endophytic bacteria, remain largely unexplored. These bacteria play crucial roles in plant health, stress tolerance, and ecological interactions. This study represents the first comprehensive effort to isolate, identify, and functionally characterize the bacterial endophytes inhabiting muscadine grape berries using a culture-dependent approach. We isolated diverse bacterial species spanning six genera-Bacillus, Staphylococcus, Paenibacillus, Calidifontibacillus, Curtobacterium, and Tatumella. Microscopic and physiological analysis revealed variations in bacterial morphology, with isolates demonstrating adaptability to varied temperatures. Cluster-based analysis indicated functional specialization among the isolates, with species from Pseudomonadota and Actinomycetota exhibiting superior plant growth-promoting abilities, whereas Bacillota species displayed potential biocontrol and probiotic properties. Among them, Tatumella ptyseos demonstrated exceptional plant growth-promoting traits, including indole-3-acetic acid production, nitrogen fixation, phosphate solubilization, and carbohydrate fermentation. Additionally, Bacillus spp. showed presumptive biocontrol potential, while Paenibacillus cineris emerged as a potential probiotic candidate. The identification of Calidifontibacillus erzurumensis as a novel endophytic species further expands the known biodiversity of grape-associated microbes. These findings provide insights into the metabolic diversity and functional roles of muscadine grape-associated endophytes, highlighting their potential for agricultural and biotechnological applications.
Collapse
Affiliation(s)
- Meenakshi Agarwal
- Center for Viticulture & Small Fruit Research, Florida A&M University, Tallahassee, FL 32317, USA
| | | |
Collapse
|
3
|
Quintero M, Zuluaga-Valencia SD, Ríos-López LG, Sánchez O, Bernal CA, Sepúlveda N, Gómez-León J. Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential. Microorganisms 2024; 12:2631. [PMID: 39770833 PMCID: PMC11676337 DOI: 10.3390/microorganisms12122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Mercury pollution is a significant environmental issue, primarily resulting from industrial activities, including gold mining extraction. In this study, 333 microorganisms were tested in increasing mercury concentrations, where 158 bacteria and 14 fungi were able to grow and remain viable at concentrations over 5.0 mg/L of mercuric chloride (II). One of the bacterial strains, Stenotrophomonas sp. INV PRT0231, isolated from the mouth of the San Juan River in the Chocó region in Colombia, showed a high mercury resistance level (MIC90 of 27 ± 9 mg/L), with a removal rate of 86.9%, an absorption rate of 1.2%, and a volatilization rate of 85.7% at pH 6.0 and 30.0 °C. The FTIR analysis showed changes in the functional groups, including fatty acid chains and methyl groups, proteins, and lipopolysaccharides associated with the carboxylate group (COO-), suggesting an important role of these biomolecules and their associated functional groups as mechanisms employed by the bacterium for mercury detoxification. Our study contributes to the understanding of the mechanisms of mercury biotransformation in microbial environmental isolates to help develop bioremediation strategies to mitigate mercury pollution caused by anthropogenic activities.
Collapse
Affiliation(s)
- Marynes Quintero
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| | - Sol D. Zuluaga-Valencia
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| | - Lady Giselle Ríos-López
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| | - Olga Sánchez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Cesar A. Bernal
- Marine Environmental Quality Laboratory Unit–LABCAM, Marine Environment Quality Program–CAM, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia;
| | - Niza Sepúlveda
- Environmental Biotechnology Research Group, Faculty of Engineering, Technological University of Choco “Diego Luis Cordoba”, Quibdó 270001, Chocó, Colombia;
| | - Javier Gómez-León
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| |
Collapse
|
4
|
Messeha SS, Agarwal M, Gendy SG, Mehboob SB, Soliman KFA. The Anti-Obesogenic Effects of Muscadine Grapes through Ciliary Neurotrophic Factor Receptor (Cntfr) and Histamine Receptor H1 (Hrh1) Genes in 3T3-L1 Differentiated Mouse Cells. Nutrients 2024; 16:1817. [PMID: 38931172 PMCID: PMC11206641 DOI: 10.3390/nu16121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity and type 2 diabetes are prevalent metabolic diseases that have significant links to several chronic diseases, including cancer, diabetes, hypertension, and cardiovascular disease. Muscadine grape extracts have shown the potential to reduce adiposity and improve insulin sensitivity and glucose control. Thus, this study was designed to determine the potential of muscadine grape berries extract (Pineapple and Southern Home) for its antiobesity properties in 3T3-L1 cells as a model for obesity research. The current study's data indicated the total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydraziyl (DPPH) activity were higher in cultivar (CV) Southern Home, meanwhile, elevated the total flavonoid content (TFC) in Pineapple. Both extracts were safe across the tested range (0-5 mg/mL). A noticeable reduction in lipid accumulation was also found in extract-treated cells. In preadipocytes and adipocytes, the tested extracts showed significant alterations in various genes involved in glucose homeostasis and obesity. The most remarkable findings of the current study are the upregulation of two genes, Cntfr (+712.715-fold) and Hrh1 (+270.11-fold) in CV Pineapple extract-treated adipocytes 3T3-L1 and the high fold increase in Ramp3 induced by both Pineapple and Southern Home in pre-adipose cells. Furthermore, the tested extracts showed a potential to alter the mRNA of various genes, including Zfp91, B2m, Nr3c1, Insr, Atrn, Il6ra, Hsp90ab1, Sort1, and Npy1r. In conclusion, the data generated from the current study suggested that the two extracts under investigation are considered potential candidates for controlling insulin levels and managing obesity.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1415 ML King Blvd., Tallahassee, FL 32307, USA
| | - Meenakshi Agarwal
- Center for Viticulture & Small Fruit Research, Florida A&M University, Tallahassee, FL 32317, USA;
| | - Sherif G. Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Sheikh B. Mehboob
- Center for Viticulture & Small Fruit Research, Florida A&M University, Tallahassee, FL 32317, USA;
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1415 ML King Blvd., Tallahassee, FL 32307, USA
| |
Collapse
|
5
|
Fan R, Xie W, Ma H, Zhu M, Ma K, Yan X. Isolation of cadmium-resistant microbial strains and their immobilisation of cadmium in soil. Biodegradation 2023; 34:445-459. [PMID: 37043132 DOI: 10.1007/s10532-023-10026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023]
Abstract
Six cadmium (Cd)-resistant microbial strains were isolated and their ability to immobilise Cd2+ in soil investigated. Cd-1, Cd-2, Cd-5, and Cd-6 were identified as Stenotrophomonas sp., Cd-3 as Achromobacter sp., and Cd-7 as Staphylococcus sp. The six strains showed a wide adaptation range for salinity and a strong tolerance to Cd2+. The effects of the initial Cd2+ concentration (1-100 mg/L), duration (18-72 h), temperature (10-40 °C), and pH (5.0-9.0) on the efficiency of Cd2+ removal were analysed. The results revealed that the Cd2+ removal rate was higher at an initial Cd2+ concentration of 5-100 mg/L than at 1 mg/L. The maximum Cd2+ removal effect was at a culture duration of 36 h, temperature of 10-35 °C, and pH of 5.0-7.0. X-ray diffraction (XRD) analysis revealed that the Cd2+ was immobilised by Stenotrophomonas sp. Cd-2 and Staphylococcus sp. Cd-7 through bio-precipitation. X-ray photoelectron spectroscopy (XPS) revealed that the Cd2+ was adsorbed by Stenotrophomonas sp. Cd-2, Achromobacter sp. Cd-3, and Staphylococcus sp. Cd-7. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the isolates reacted with the Cd2+ mainly through the O-H, protein N-H, C-N, lipid C-H, fatty acid COO, polysaccharide C-O, P-O, and other functional groups, as well as with lipid molecules on the cell wall surfaces. Scanning electron microscopy (SEM) analysis revealed that there was little difference in the cells after Cd2+ treatment. The results of the soil remediation experiments indicated that the toxicity of Cd in soil could be effectively reduced using certain strains of microbe.
Collapse
Affiliation(s)
- Ruijuan Fan
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China.
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan, 750021, China.
| | - Weixia Xie
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Heqin Ma
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Mengke Zhu
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Kun Ma
- Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, 750021, China
- National Key Laboratory Breeding Base of Northwest Land Degradation and Ecological Restoration, Ningxia University, Yinchuan, 750021, China
| | - Xingfu Yan
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan, 750021, China
| |
Collapse
|
6
|
Oleńska E, Małek W, Wójcik M, Szopa S, Swiecicka I, Aleksandrowicz O, Włostowski T, Zawadzka W, Sillen WMA, Vangronsveld J, Cholakova I, Langill T, Thijs S. Bacteria associated with Zn-hyperaccumulators Arabidopsis halleri and Arabidopsis arenosa from Zn-Pb-Cd waste heaps in Poland as promising tools for bioremediation. Sci Rep 2023; 13:12606. [PMID: 37537323 PMCID: PMC10400580 DOI: 10.1038/s41598-023-39852-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
To identify metal adapted bacteria equipped with traits positively influencing the growth of two hyperaccumulator plant species Arabidopsis arenosa and Arabidopsis halleri, we isolated bacteria inhabiting rhizosphere and vegetative tissues (roots, basal and stem leaves) of plants growing on two old Zn-Pb-Cd waste heaps in Bolesław and Bukowno (S. Poland), and characterized their potential plant growth promoting (PGP) traits as well as determined metal concentrations in rhizosphere and plant tissues. To determine taxonomic position of 144 bacterial isolates, 16S rDNA Sanger sequencing was used. A metabolic characterization of isolated strains was performed in vitro using PGP tests. A. arenosa and A. halleri accumulate high amounts of Zn in their tissues, especially in stem leaves. Among in total 22 identified bacterial taxa, the highest level of the taxonomical diversity (H' = 2.01) was revealed in A. halleri basal leaf endophytes originating from Bukowno waste heap area. The 96, 98, 99, and 98% of investigated strains showed tolerant to Cd, Zn, Pb and Cu, respectively. Generally, higher percentages of bacteria could synthesize auxins, siderophores, and acetoin as well as could solubilize phosphate. Nine of waste heap origin bacterial strains were tolerant to toxic metals, showed in vitro PGP traits and are potential candidates for bioremediation.
Collapse
Affiliation(s)
- Ewa Oleńska
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland.
| | - Wanda Małek
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Sebastian Szopa
- SHIM-POL A.M. Borzymowski, 5 Lubomirski, 05-080, Izabelin, Poland
| | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
| | | | - Tadeusz Włostowski
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
| | - Weronika Zawadzka
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
| | - Wouter M A Sillen
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Iva Cholakova
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tori Langill
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Sofie Thijs
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
7
|
Kognou ALM, Chio C, Khatiwada JR, Shrestha S, Chen X, Zhu Y, Ngono Ngane RA, Agbor Agbor G, Jiang ZH, Xu CC, Qin W. Characterization of Potential Virulence, Resistance to Antibiotics and Heavy Metals, and Biofilm-Forming Capabilities of Soil Lignocellulolytic Bacteria. Microb Physiol 2023; 33:36-48. [PMID: 36944321 DOI: 10.1159/000530228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Soil bacteria participate in self-immobilization processes for survival, persistence, and production of virulence factors in some niches or hosts through their capacities for autoaggregation, cell surface hydrophobicity, biofilm formation, and antibiotic and heavy metal resistance. This study investigated potential virulence, antibiotic and heavy metal resistance, solvent adhesion, and biofilm-forming capabilities of six cellulolytic bacteria isolated from soil samples: Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Strains were subjected to phenotypic methods, including heavy metal and antibiotic susceptibility and virulence factors (protease, lipase, capsule production, autoaggregation, hydrophobicity, and biofilm formation). The effect of ciprofloxacin was also investigated on bacterial susceptibility over time, cell membrane, and biofilm formation. Strains MKAL2, MKAL5, and MKAL6 exhibited protease and lipase activities, while only MKAL6 produced capsules. All strains were capable of aggregating, forming biofilm, and adhering to solvents. Strains tolerated high amounts of chromium, lead, zinc, nickel, and manganese and were resistant to lincomycin. Ciprofloxacin exhibited bactericidal activity against these strains. Although the phenotypic evaluation of virulence factors of bacteria can indicate their pathogenic nature, an in-depth genetic study of virulence, antibiotic and heavy metal resistance genes is required.
Collapse
Affiliation(s)
| | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | | | - Sarita Shrestha
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Xuantong Chen
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Yuen Zhu
- School of Environment and Resources, Shanxi University, Taiyuan, China
| | | | - Gabriel Agbor Agbor
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies Cameroon, Yaoundé, Cameroon
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chunbao Charles Xu
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
8
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
9
|
Gómez-Villegas P, Guerrero JL, Pérez-Rodriguez M, Bolívar JP, Morillo A, Vigara J, Léon R. Exploring the microbial community inhabiting the phosphogypsum stacks of Huelva (SW SPAIN) by a high throughput 16S/18S rDNA sequencing approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106103. [PMID: 35151972 DOI: 10.1016/j.aquatox.2022.106103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Around 100 Mt of phosphogypsum (PG) have been deposited in large stacks on the salt marshes of the Tinto River estuary in Huelva (SW Spain), covering about 1000 ha. These stacks contain extremely acidic water (pH < 2) with high concentrations of pollutants which can cause emissions into their surroundings, generating important environmental concerns. Despite many chemical, geological or hydrological studies have been conducted to characterize the PG stacks of Huelva, the microbial community inhabiting this extreme environment remains unexplored. Using a 16S/18S-rRNA-high throughput sequencing approach, we have uncovered the main taxonomic groups able to live in the acidic metal-contaminated water, which is in direct contact with the PG, demonstrating for the first time the existence of a huge diversity of microbial species in these extreme conditions. In addition, the physicochemical characteristics of the water sampled have been analyzed. These studies have revealed that the most abundant bacteria found in two different leachate samples of the PG stacks belong to the genera Acidiphilium, Pseudomonas, Leptosprillum, Acidithrix, or Acidithiobacillus, typically found in acid mine drainage (AMD) environments, which in total represent around 50% of the total bacterial community. Biodiversity of eukaryotes in PG water is lower than that of prokaryotes, especially in the water collected from the perimeter channel that surrounds the PG stacks, where the pH reaches a value of 1.5 and the activity concentrations exceed 300 Bq L-1 for 238U or 20 Bq L-1 for 210Po, values which are from four to five orders of magnitude higher than those usually found in unperturbed surface waters. Even so, an unexpected diversity of algae, fungi, and ciliates have been found in the PG stacks of Huelva, where chlorophyte microalgae and basidiomycetes fungi are the most abundant eukaryotes. Additional bioinformatics tools have been used to perform a functional analysis and predict the most common metabolic pathways in the PG microbiota. The obtained data indicate that the extreme conditions of these PG stacks hide an unexpected microbial diversity, which can play an important role in the dynamics of the contaminating compounds of the PG and provide new strains with unique biotechnological applications.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - José Luis Guerrero
- Department of Integrated Sciences, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Miguel Pérez-Rodriguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - Juan Pedro Bolívar
- Department of Integrated Sciences, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Antonio Morillo
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Rosa Léon
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain.
| |
Collapse
|
10
|
Roy T, Bandopadhyay A, Paul C, Majumdar S, Das N. Role of Plasmid in Pesticide Degradation and Metal Tolerance in Two Plant Growth-Promoting Rhizobacteria Bacillus cereus (NCIM 5557) and Bacillus safensis (NCIM 5558). Curr Microbiol 2022; 79:106. [PMID: 35157142 DOI: 10.1007/s00284-022-02793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
Disha A (Bacillus cereus) and Disha B (Bacillus safensis) were isolated from pesticide-infested agricultural field and showed tolerance against pesticides, heavy metals, and antibiotics. The isolates exhibited PGPR activities in vitro as well as in field conditions in lentil (Lens culinaris) and cow pea (Vigna unguiculata). Both the Bacillus species could not be grown in mineral salt medium but efficiently grown in the media supplemented with pesticide (imidacloprid/carbendazim) demonstrating the utilization of pesticide as carbon/nitrogen source. The HPLC studies exhibited the pesticide (imidacloprid/carbendazim) degradation by both the bacteria. B. safensis showed better degradation of carbendazim (88.93%) and imidacloprid (82.48%) than that of B. cereus 78.07% and 49.12%, respectively. The bacterial isolates showed high concentration of heavy metal tolerance viz. lead, molybdenum, cadmium, copper, cobalt, and zinc, except mercury. Both the bacteria possessed single plasmid. The plasmid-cured isolates of B. cereus did not tolerate any pesticide, whereas that of B. safensis tolerated all the pesticides, like wild strains. The plasmid curing experiments did not affect the heavy metal tolerance ability of both the bacteria indicating the genomic nature of heavy metal tolerance genes, whereas pesticide resistance genes are plasmid-dependent in B. cereus but genomic in B. safensis.
Collapse
Affiliation(s)
- Tina Roy
- Department of Botany, University of Gour Banga, Malda, W.B., 732103, India.,Department of Botany, Barasat Government College, 24 Parganas (N), Kolkata, W.B., 700124, India
| | - Anuradha Bandopadhyay
- Department of Botany, Barasat Government College, 24 Parganas (N), Kolkata, W.B., 700124, India
| | - Chandana Paul
- Department of Botany, Barasat Government College, 24 Parganas (N), Kolkata, W.B., 700124, India.,Department of Microbiology, St. Xavier's College, Park Street, Kolkata, 700016, India
| | - Sukanta Majumdar
- Department of Botany, University of Gour Banga, Malda, W.B., 732103, India
| | - Nirmalendu Das
- Department of Botany, Barasat Government College, 24 Parganas (N), Kolkata, W.B., 700124, India.
| |
Collapse
|
11
|
The rhizosphere of Sulla spinosissima growing in abandoned mining soils is a reservoir of heavy metals tolerant plant growth-promoting rhizobacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Joshi G, Meena B, Verma P, Nayak J, Vinithkumar NV, Dharani G. Deep-sea mercury resistant bacteria from the Central Indian Ocean: A potential candidate for mercury bioremediation. MARINE POLLUTION BULLETIN 2021; 169:112549. [PMID: 34182201 DOI: 10.1016/j.marpolbul.2021.112549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Deep-sea bacteria when grown in normal environmental conditions get morphologically and genetically adapted to resist the provided culture conditions for their survival, making them a possible aspirant in mercury bioremediation. In this study, seawater samples were collected from different depths of the Central Indian Ocean and seven mercury resistant bacteria (resistant to 100 mg L-1 concentration of inorganic Hg as HgCl2) were isolated. Based on 16S rRNA gene sequencing, the identified isolates belong to the genera Pseudomonas, Bacillus and Pseudoalteromonas. The presence of the merA gene in the isolates contributes to the effective volatilization of mercury. The Inductively Coupled Plasma Mass-Spectroscopy analysis revealed that the isolates can reduce up to >80% of inorganic mercury. Moreover, Fourier Transform Infrared spectrum analysis indicates that functional groups play a key role in the mechanism of adaptation towards Hg2+ reduction. Thus, the deep-sea bacteria expressed significant tolerance and reduction potential towards ionic mercury.
Collapse
Affiliation(s)
- Gajendra Joshi
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103, Andaman and Nicobar Islands, India.
| | - Balakrishnan Meena
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Pankaj Verma
- Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600100, India
| | - Jibananand Nayak
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Gopal Dharani
- Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600100, India
| |
Collapse
|
13
|
Mello IS, Targanski S, Pietro-Souza W, Frutuoso Stachack FF, Terezo AJ, Soares MA. Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110818. [PMID: 32590206 DOI: 10.1016/j.ecoenv.2020.110818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 05/27/2023]
Abstract
The quantification, efficiency, and possible mechanisms of mercury phytoremediation by endophytic bacteria are poorly understood. Here we selected 8 out of 34 previously isolated endophytic bacterial strains with a broad resistance profile to metals and 11 antibiotics: Acinetobacter baumannii BacI43, Bacillus sp. BacI34, Enterobacter sp. BacI14, Klebsiella pneumoniae BacI20, Pantoea sp. BacI23, Pseudomonas sp. BacI7, Pseudomonas sp. BacI38, and Serratia marcescens BacI56. Except for Klebsiella pneumoniae BacI20, the other seven bacterial strains promoted maize growth on a mercury-contaminated substrate. Acinetobacter baumannii BacI43 and Bacillus sp. BacI34 increased total dry biomass by approximately 47%. The bacteria assisted mercury remediation by decreasing the metal amount in the substrate, possibly by promoting its volatilization. The plants inoculated with Serratia marcescens BacI56 and Pseudomonas sp. BacI38 increased mercury volatilization to 47.16% and 62.42%, respectively. Except for Bacillus sp. BacI34 and Pantoea sp. BacI23, the other six bacterial strains favored mercury bioaccumulation in plant tissues. Endophytic bacteria-assisted phytoremediation contributed to reduce the substrate toxicity assessed in different model organisms. The endophytic bacterial strains selected herein are potential candidates for assisted phytoremediation that shall help reduce environmental toxicity of mercury-contaminated soils.
Collapse
Affiliation(s)
- Ivani Souza Mello
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Sabrina Targanski
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - William Pietro-Souza
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Ailton Jose Terezo
- Central Analítica de Combustíveis, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Marcos Antônio Soares
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
14
|
Gendy S, Chauhan A, Agarwal M, Pathak A, Rathore RS, Jaswal R. Is Long-Term Heavy Metal Exposure Driving Carriage of Antibiotic Resistance in Environmental Opportunistic Pathogens: A Comprehensive Phenomic and Genomic Assessment Using Serratia sp. SRS-8-S-2018. Front Microbiol 2020; 11:1923. [PMID: 32973703 PMCID: PMC7468404 DOI: 10.3389/fmicb.2020.01923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/21/2020] [Indexed: 12/04/2022] Open
Abstract
The carriage of both, heavy metal and antibiotic resistance appears to be a common trait in bacterial communities native to long-term contaminated habitats, including the Savannah River Site (SRS). There is widespread soil contamination at the SRS; a United States Department of Energy (DOE) facility with long-term contamination from past industrial and nuclear weapons production activities. To further evaluate the genomic and metabolic traits that underpin metal and antibiotic resistance, a robust mercury (Hg) and uranium (U)-resistant strain- SRS-8-S-2018, was isolated. Minimum inhibitory concentration of this strain revealed resistance to Hg (10 μg/ml) and U (5 mM), the two main heavy metal contaminants at the SRS. Metabolic assessment of strain SRS-8-S-2018 using Biolog metabolic fingerprinting analysis revealed preference for carbohydrate utilization followed by polymers, amino acids, carboxy acids, and esters; this physiological activity diminished when Hg stress was provided at 1 and 3 μg/ml and completely ceased at 5 μg/ml Hg, indicating that continued release of Hg will have negative metabolic impacts to even those microorganisms that possess high resistance ability. Development of antibiotic resistance in strain SRS-8-S-2018 was evaluated at a functional level using phenomics, which confirmed broad resistance against 70.8% of the 48 antibiotics tested. Evolutionary and adaptive traits of strain SRS-8-S-2018 were further assessed using genomics, which revealed the strain to taxonomically affiliate with Serratia marcescens species, possessing a genome size of 5,323,630 bp, 5,261 proteins (CDS), 55 genes for transfer RNA (tRNA), and an average G + C content of 59.48. Comparative genomics with closest taxonomic relatives revealed 360 distinct genes in SRS-8-S-2018, with multiple functions related to both, antibiotic and heavy metal resistance, which likely facilitates the strain’s survival in a metalliferous soil habitat. Comparisons drawn between the environmentally isolated Serratia SRS-8-S-2018 with 31 other strains revealed a closer functional association with medically relevant isolates suggesting that propensity of environmental Serratia isolates in acquiring virulence traits, as a function of long-term exposure to heavy metals, which is facilitating development, recruitment and proliferation of not only metal resistant genes (MRGs) but antibiotic resistant genes (ARGs), which can potentially trigger future bacterial pathogen outbreaks emanating from contaminated environmental habitats.
Collapse
Affiliation(s)
- Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ashvini Chauhan
- Environmental Biotechnology Laboratory, School of the Environment, FSH Science Research Center, Florida A&M University, Tallahassee, FL, United States
| | - Meenakshi Agarwal
- Environmental Biotechnology Laboratory, School of the Environment, FSH Science Research Center, Florida A&M University, Tallahassee, FL, United States
| | - Ashish Pathak
- Environmental Biotechnology Laboratory, School of the Environment, FSH Science Research Center, Florida A&M University, Tallahassee, FL, United States
| | - Rajesh Singh Rathore
- Environmental Biotechnology Laboratory, School of the Environment, FSH Science Research Center, Florida A&M University, Tallahassee, FL, United States
| | - Rajneesh Jaswal
- Environmental Biotechnology Laboratory, School of the Environment, FSH Science Research Center, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
15
|
Thomas JC, Oladeinde A, Kieran TJ, Finger JW, Bayona‐Vásquez NJ, Cartee JC, Beasley JC, Seaman JC, McArthur JV, Rhodes OE, Glenn TC. Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site. Microb Biotechnol 2020; 13:1179-1200. [PMID: 32363769 PMCID: PMC7264878 DOI: 10.1111/1751-7915.13578] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
Contaminants such as heavy metals may contribute to the dissemination of antimicrobial resistance (AMR) by enriching resistance gene determinants via co-selection mechanisms. In the present study, a survey was performed on soils collected from four areas at the Savannah River Site (SRS), South Carolina, USA, with varying contaminant profiles: relatively pristine (Upper Three Runs), heavy metals (Ash Basins), radionuclides (Pond B) and heavy metal and radionuclides (Tim's Branch). Using 16S rRNA gene amplicon sequencing, we explored the structure and diversity of soil bacterial communities. Sites with legacies of metal and/or radionuclide contamination displayed significantly lower bacterial diversity compared to the reference site. Metagenomic analysis indicated that multidrug and vancomycin antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) including those associated with copper, arsenic, iron, nickel and zinc were prominent in all soils including the reference site. However, significant differences were found in the relative abundance and diversity of certain ARGs and MRGs in soils with metal/radionuclide contaminated soils compared to the reference site. Co-occurrence patterns revealed significant ARG/MRG subtypes in predominant soil taxa including Acidobacteriaceae, Bradyrhizobium, Mycobacterium, Streptomyces, Verrumicrobium, Actinomadura and Solirubacterales. Overall, the study emphasizes the potential risk of human activities on the dissemination of AMR in the environment.
Collapse
Affiliation(s)
- Jesse C. Thomas
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
| | - Adelumola Oladeinde
- Bacterial Epidemiology and Antimicrobial Resistance Research UnitUnited States Department of AgricultureAthensGA30605USA
| | - Troy J. Kieran
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
| | - John W. Finger
- Department of Biological SciencesAuburn UniversityAuburnAL36849USA
| | - Natalia J. Bayona‐Vásquez
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
- Institute of BioinformaticsUniversity of GeorgiaAthensGA30602USA
| | - John C. Cartee
- Division of STD PreventionCenters for Disease Control and PreventionAtlantaGA30329USA
| | - James C. Beasley
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGA30602USA
| | - John C. Seaman
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
| | - J Vuan McArthur
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
| | - Olin E. Rhodes
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
- Odum School of EcologyUniversity of GeorgiaAthensGA30602USA
| | - Travis C. Glenn
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
- Institute of BioinformaticsUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
16
|
Draft Genome Sequence of Mercury-Resistant Serratia sp. Strain SRS-8-S-2018. Microbiol Resour Announc 2020; 9:9/15/e00136-20. [PMID: 32273355 PMCID: PMC7380528 DOI: 10.1128/mra.00136-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mercury (Hg)-resistant Serratia sp. strain, SRS-8-S-2018, was isolated, followed by generation of its draft genome sequence, which indicated a genomic size of 5,323,630 bp composed of 5,261 coding sequences. A suite of genomic functions in strain SRS-8-S-2018 was identified, and these likely facilitate survival in a metalliferous soil habitat. A mercury (Hg)-resistant Serratia sp. strain, SRS-8-S-2018, was isolated, followed by generation of its draft genome sequence, which indicated a genomic size of 5,323,630 bp composed of 5,261 coding sequences. A suite of genomic functions in strain SRS-8-S-2018 was identified, and these likely facilitate survival in a metalliferous soil habitat.
Collapse
|
17
|
A Rapid and High Throughput MIC Determination Method to Screen Uranium Resistant Microorganisms. Methods Protoc 2020; 3:mps3010021. [PMID: 32138252 PMCID: PMC7189662 DOI: 10.3390/mps3010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
The assessment of minimum inhibitory concentration (MIC) is a conventional technique used for the screening of microbial resistance against antibiotics, biocides, and contaminants such as heavy metals. However, as part of our ongoing work, we have observed biases associated with using traditional liquid MIC method to screen microbial heavy metal resistance, including both bacterial and fungal strains. Specifically, the addition of uranium into synthetic media causes immediate precipitation prior to the initiation of microbial growth, thus hampering the optical density measurements, and the obtained MIC values are thus flawed and inaccurate. To address this discrepancy, we report the optimization and development of a serial-dilution-based MIC method conducted on solid growth media supplemented with uranium, which is more accurate, relative to the testing of MICs performed in liquid cultures. Notably, we report on the efficacy of this method to screen not only bacteria that are resistant to uranium but also demonstrate the successful application to yeast and fungal isolates, for their ability to resist uranium, is more accurate and sensitive relative to the liquid method. We believe that this newly developed method to screen heavy metal resistance, such as uranium, is far superior to the existing liquid MIC method and propose replacing the liquid assay with the solid plate MIC reported herein.
Collapse
|
18
|
Pathak A, Jaswal R, Chauhan A. Genomic Characterization of a Mercury Resistant Arthrobacter sp. H-02-3 Reveals the Presence of Heavy Metal and Antibiotic Resistance Determinants. Front Microbiol 2020; 10:3039. [PMID: 32010097 PMCID: PMC6978705 DOI: 10.3389/fmicb.2019.03039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Nuclear production and industrial activities led to widespread contamination of the Department of Energy (DOE) managed Savannah River Site (SRS), located in South Carolina, United States. The H-02 wetland system was constructed in 2007 for the treatment of industrial and storm water runoff from the SRS Tritium Facility. Albeit at low levels, mercury (Hg) has been detected in the soils of the H-02 wetland ecosystem. In anoxic sediments, Hg is typically methylated by anaerobic microbiota, forming the highly neurotoxic methylmercury (MeHg), which biomagnifies across food webs. However, in surficial oxic wetland soils, microbially mediated demethylation and/or volatilization processes can transform Hg2+ into the less toxic Hg0 form which is released into the atmosphere, thus circumventing MeHg formation. To obtain a deeper understanding on bacterial Hg volatilization, a robust Hg-resistant (HgR) bacteria, called as strain H-02-3 was isolated from the H-02 soils. A draft genome sequence of this strain was obtained at a coverage of 700×, which assembled in 44 contigs with an N50 of 171,569 bp. The genomic size of the strain H-02-3 was 4,708,612 bp with a total number of 4,240 genes; phylogenomic analysis revealed the strain as an Arthrobacter species. Comparative genomics revealed the presence of 1100 unique genes in strain H-02-3, representing 26.7% of the total genome; many identified previously as metal resistance genes (MRGs). Specific to Hg-cycling, the presence of mercuric ion reductase (merA), the organomercurial lyase (merB), and the mercuric resistance operon regulatory protein, were identified. By inference, it can be proposed that the organomercurial lyase facilitates the demethylation of MeHg into Hg2+ which is then reduced to Hg0 by MerA in strain H-02-3. Furthermore, gene prediction using resistome analysis of strain H-02-3 revealed the presence of several antibiotic resistance genes (ARGs), that statistically correlated with the presence of metal resistant genes (MRGs), suggesting co-occurrence patterns of MRGs and ARGs in the strain. Overall, this study delineates environmentally beneficial traits that likely facilitates survival of Arthrobacter sp. H-02-3 within the H-02 wetland soil. Finally, this study also highlights the largely ignored public health risk associated with the co-development of ARGs and MRGs in bacteria native to historically contaminated soils.
Collapse
Affiliation(s)
- Ashish Pathak
- Environmental Biotechnology Laboratory, School of the Environment, FSH Science Research Center, Florida A&M University, Tallahassee, FL, United States
| | - Rajneesh Jaswal
- Environmental Biotechnology Laboratory, School of the Environment, FSH Science Research Center, Florida A&M University, Tallahassee, FL, United States
| | - Ashvini Chauhan
- Environmental Biotechnology Laboratory, School of the Environment, FSH Science Research Center, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|