1
|
Narváez-Bandera I, Suárez-Gómez D, Castro-Rivera CDM, Camasta-Beníquez A, Durán-Quintana M, Cabrera-Ríos M, Isaza CE. Hepatitis C virus infection and Parkinson's disease: insights from a joint sex-stratified BioOptimatics meta-analysis. Sci Rep 2024; 14:22838. [PMID: 39354018 PMCID: PMC11445468 DOI: 10.1038/s41598-024-73535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatitis C virus (HCV) infection poses a significant public health challenge and often leads to long-term health complications and even death. Parkinson's disease (PD) is a progressive neurodegenerative disorder with a proposed viral etiology. HCV infection and PD have been previously suggested to be related. This work aimed to identify potential biomarkers and pathways that may play a role in the joint development of PD and HCV infection. Using BioOptimatics-bioinformatics driven by mathematical global optimization-, 22 publicly available microarray and RNAseq datasets for both diseases were analyzed, focusing on sex-specific differences. Our results revealed that 19 genes, including MT1H, MYOM2, and RPL18, exhibited significant changes in expression in both diseases. Pathway and network analyses stratified by sex indicated that these gene expression changes were enriched in processes related to immune response regulation in females and immune cell activation in males. These findings suggest a potential link between HCV infection and PD, highlighting the importance of further investigation into the underlying mechanisms and potential therapeutic targets involved.
Collapse
Affiliation(s)
- Isis Narváez-Bandera
- Bioengineering Graduate Program, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Deiver Suárez-Gómez
- Bioengineering Graduate Program, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico
| | - Coral Del Mar Castro-Rivera
- Biology Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, 00681, Puerto Rico
| | - Alaina Camasta-Beníquez
- Biology Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, 00681, Puerto Rico
| | - Morelia Durán-Quintana
- Biology Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, 00681, Puerto Rico
| | - Mauricio Cabrera-Ríos
- Bioengineering Graduate Program, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico
- Industrial Engineering Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico
| | - Clara E Isaza
- Bioengineering Graduate Program, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico.
- Biology Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, 00681, Puerto Rico.
| |
Collapse
|
2
|
Yang Y, Zhao W, Wang Y, Du J. Prognostic impact of MICALL1 and associates with immune infiltration in liver hepatocellular carcinoma patients. Cancer Biomark 2023:CBM220370. [PMID: 37248888 DOI: 10.3233/cbm-220370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is one of the most malignancy over the world. Previous studies have proven that Molecules Interacting with CasL-Like 1 (MICALL1) participated in cellular trafficking cascades, while there has no study to explore the function and carcinogenic mechanism MICALL1 in LIHC. METHODS We aimed to investigate the relationship between MICALL1 mRNA expression and LIHC using TCGA database. The expression of MICALL1 protein in clinic samples were examined by UALCAN database. Kaplan-Meier method was used for survival analysis. Logistic regression and Cox regression were performed to evaluate the prognostic significance of MICALL1. The MICALL1-binding protein were built by the STRING tool. Enrichment analysis by GO, KEGG and GSEA was used to explore possible function of MICALL1. The ssGSEA method was used to investigate the association between MICALL1 expression and the immune infiltration level in LIHC. RESULTS The expression and prognostic value of different MICAL family members in LIHC were evaluated. The expression of MICALL1 was significantly increased at both the transcript and protein levels in LIHC tissues. Further, the LIHC patients with high MICALL1 levels showed a worse OS, DSS and PFI. Some clinicopathologic features were identified to be related to MICALL1 expression in LIHC included clinical T stage, pathologic stage, histologic grade and AFP concentration. Univariate and multivariate survival analysis showed that MICALL1 was an independent prognostic marker for OS and DSS. Further enrichment analysis revealed that the K-RAS, TNFα/NF-κB and inflammatory response were significantly enriched in the high MICALL1 expression group. Immune infiltration analysis showed that high MICALL1 expression was correlated with infiltration level of macrophage cells, Th2 cells and some other immune cell types, including TFH. CONCLUSIONS MICALL1 expression was significantly associated with immune cell infiltration and may regarded as a promising prognostic biomarker for LIHC patients.
Collapse
Affiliation(s)
- Yixing Yang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weizhen Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueyuan Wang
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Li Y, Yuan SL, Yin JY, Yang K, Zhou XG, Xie W, Wang Q. Differences of core genes in liver fibrosis and hepatocellular carcinoma: Evidence from integrated bioinformatics and immunohistochemical analysis. World J Gastrointest Oncol 2022; 14:1265-1280. [PMID: 36051101 PMCID: PMC9305567 DOI: 10.4251/wjgo.v14.i7.1265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fibrosis and hepatocellular carcinoma (HCC) are common adverse consequences of chronic liver injury. The interaction of various risk factors may cause them to happen. Identification of specific biomarkers is of great significance for understanding the occurrence, development mechanisms, and determining the novel tools for diagnosis and treatment of both liver fibrosis and HCC.
AIM To identify liver fibrosis-related core genes, we analyzed the differential expression pattern of core genes in liver fibrosis and HCC.
METHODS Gene expression profiles of three datasets, GSE14323, GSE36411, and GSE89377, obtained from the Gene Expression Omnibus (GEO) database, were analyzed, and differentially expressed genes (DEGs) between patients with liver cirrhosis and healthy controls were identified by screening via R software packages and online tool for Venn diagrams. The WebGestalt online tool was used to identify DEGs enriched in biological processes, molecular functions, cellular components, and Kyoto Encyclopedia of Genes and Genomes pathways. The protein–protein interactions of DEGs were visualized using Cytoscape with STRING. Next, the expression pattern of core genes was analyzed using Western blot and immunohistochemistry in a carbon tetrachloride (CCl4)-induced liver cirrhosis mouse model and in patient liver samples. Finally, Kaplan-Meier curves were constructed using the Kaplan-Meier plotter online server.
RESULTS Forty-five DEGs (43 upregulated and 2 downregulated genes) associated with liver cirrhosis were identified from three GEO datasets. Ten hub genes were identified, which were upregulated in liver cirrhosis. Western blot and immunohistochemical analyses of the three core genes, decorin (DCN), dermatopontin (DPT), and SRY-box transcription factor 9 (SOX9), revealed that they were highly expressed in the CCl4-induced liver cirrhosis mouse model. The expression levels of DCN and SOX 9 were positively correlated with the degree of fibrosis, and SOX 9 level in HCC patients was significantly higher than that in fibrosis patients. However, high expression of DPT was observed only in patients with liver fibrosis, and its expression in HCC was low. The gene expression profiling interactive analysis server (GEPIA) showed that SOX9 was significantly upregulated whereas DCN and DPT were significantly downregulated in patients with HCC. In addition, the Kaplan-Meier curves showed that HCC patients with higher SOX9 expression had significantly lower 5-year survival rate, while patients with higher expression of DCN or DPT had significantly higher 5-year survival rates.
CONCLUSION The expression levels of DCN, DPT, and SOX9 were positively correlated with the degree of liver fibrosis but showed different correlations with the 5-year survival rates of HCC patients.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Shou-Li Yuan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Jing-Ya Yin
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xin-Gang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
4
|
Yu B, Kong D, Cheng C, Xiang D, Cao L, Liu Y, He Y. Assembly and recognition of keratins: A structural perspective. Semin Cell Dev Biol 2021; 128:80-89. [PMID: 34654627 DOI: 10.1016/j.semcdb.2021.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022]
Abstract
Keratins are one of the major components of cytoskeletal network and assemble into fibrous structures named intermediate filaments (IFs), which are important for maintaining the mechanical properties of cells and tissues. Over the past decades, evidence has shown that the functions of keratins go beyond providing mechanical support for cells, they interact with multiple cellular components and are widely involved in the pathways of cell proliferation, differentiation, motility and death. However, the structural details of keratins and IFs are largely missing and many questions remain regarding the mechanisms of keratin assembly and recognition. Here we briefly review the current structural models and assembly of keratins as well as the interactions of keratins with the binding partners, which may provide a structural view for understanding the mechanisms of keratins in the biological activities and the related diseases.
Collapse
Affiliation(s)
- Bowen Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dandan Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longxing Cao
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongning He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
The Overexpression of Keratin 23 Promotes Migration of Ovarian Cancer via Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8218735. [PMID: 33204716 PMCID: PMC7652601 DOI: 10.1155/2020/8218735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Background Keratin 23 (KRT23) is a new member of the KRT gene family and known to be involved in the development and migration of various types of tumors. However, the role of KRT23 in ovarian cancer (OC) remains unclear. This study is aimed at investigating the function of KRT23 in OC. Methods The expression of KRT23 in normal ovarian and OC tissues was determined using the Oncomine database and immunohistochemical staining. Reverse transcription quantitative polymerase chain reaction assay was used to analyze the expression of KRT23 in normal ovarian epithelial cell lines and OC cell lines. Small interfering RNA (siRNA), wound healing assay, and transwell assay were conducted to detect the effects of KRT23 on OC cell migration and invasion. Further mechanistic studies were verified by the Gene Expression Profiling Interactive Analysis platform, Western blotting, and immunofluorescence staining. Results KRT23 was highly expressed in OC tissues and cell lines. High KRT23 expression could regulate OC cell migration and invasion, and the reduction of KRT23 by siRNA inhibited the migration and invasion of OC cells in vitro. Furthermore, KRT23 mediated epithelial-mesenchymal transition (EMT) by regulating p-Smad2/3 levels in the TGF-β/Smad signaling pathway. Conclusions These results demonstrate that KRT23 plays an important role in OC migration via EMT by regulating the TGF-β/Smad signaling pathway.
Collapse
|
6
|
Mohammadzadeh I, Qujeq D, Yousefi T, Ferns GA, Maniati M, Vaghari-Tabari M. CRISPR/Cas9 gene editing: A new therapeutic approach in the treatment of infection and autoimmunity. IUBMB Life 2020; 72:1603-1621. [PMID: 32344465 DOI: 10.1002/iub.2296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9) may be viewed as an adaptive bacterial immune system. When a virus infects a bacterium, a fragment of the virus genome is inserted into the CRISPR sequence of the bacterial genome as a memory. When the bacterium becomes infected again with the same virus, an RNA molecule that is a transcript of the memory sequence, directs Cas9, an endonuclease, to the complementary region of the virus genome, and Cas9 disables the virus by a double-strand break. In recent years, studies have shown that by designing synthetic RNA molecules and delivering them along with Cas9 into eukaryotic cells, different regions of the cell's genome can be targeted and manipulated. These findings have drawn much attention to this new technology and it has been shown that CRISPR/Cas9 gene editing can be used to treat some human diseases. These include infectious diseases and autoimmune diseases. In this review article, in addition to a brief overview of the biology of the CRISPR/Cas9 system, we collected the most recent findings on the applications of CRISPR/Cas9 technology for better investigation of the pathogenesis and treatment of viral infections (human immunodeficiency virus infection, hepatitis virus infections, and onco-virus infections), non-viral infections (parasitic, fungal, and bacterial infections), and autoimmune diseases.
Collapse
Affiliation(s)
- Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|