1
|
Moreno KGT, Gasparotto Junior A, Dos Santos AC, Palozi RAC, Guarnier LP, Marques AAM, Romão PVM, Lorençone BR, Cassemiro NS, Silva DB, Tirloni CAS, de Barros ME. Nephroprotective and antilithiatic activities of Costus spicatus (Jacq.) Sw.: Ethnopharmacological investigation of a species from the Dourados region, Mato Grosso do Sul State, Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113409. [PMID: 32979411 DOI: 10.1016/j.jep.2020.113409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Costus spicatus (Jacq.) Sw., also known as "cana-do-brejo," is a species that is widely used in Brazilian traditional medicine for the treatment of kidney diseases. However, no studies have evaluated its nephroprotective and antilithiatic effects. AIM To investigate nephroprotective and antilithiatic effects of C. spicatus in a preclinical model of acute kidney injury (AKI) and in vitro nephrolithiasis. MATERIALS AND METHODS C. spicatus leaves were collected directly from the natural environment in the Dourados region, Mato Grosso do Sul State, Brazil. The ethanol-soluble fraction of C. spicatus (ESCS) was obtained by infusion. Phytochemical characterization was performed by liquid chromatography coupled to diode array detector and mass spectrometer (LC-DAD-MS). We assessed whether ESCS has acute or prolonged diuretic activity. The nephroprotective effects of ESCS were evaluated in a model of AKI that was induced by glycerol (10 ml/kg, intramuscularly) in Wistar rats. Different doses of ESCS (30, 100, and 300 mg/kg) were administered orally for 5 days before the induction of AKI. Urinary parameters were measured on days 1, 3, 5, and 7. Twenty-four hours after the last urine collection, blood samples were obtained for the biochemical analysis. Blood pressure levels, renal vascular reactivity, renal tissue redox status, and histopathological changes were measured. Antilithiatic effects were evaluated by in vitro crystallization. Calcium oxalate precipitation was induced by sodium oxalate in urine samples with ESCS at 0.05, 0.5, and 5 mg/ml. RESULTS From LC-DAD-MS analyses, flavonoids, saponins and other phenolic compounds were determined in the composition of ESCS. Significant reductions of the excretion of urinary total protein, creatinine, sodium, and potassium were observed in the AKI group, with significant histopathological damage (swelling, vacuolization, necrosis, and inflammatory infiltration) in the proximal convoluted tubule. Treatment with ESCS exerted a significant nephroprotective effect by increasing the urinary excretion of total protein, urea, creatinine, sodium, potassium, calcium, and chloride. All of the groups that were treated with ESCS exhibited a reduction of histopathological lesions and significant modulation of the tissue redox state. We also observed a concentration-dependent effect of ESCS on the crystallization of urinary crystals, with reductions of the size and proportion of monohydrated crystals. CONCLUSION The data suggest that C. spicatus has nephroprotective and antilithiatic effects, suggesting possible effectiveness in its traditional use.
Collapse
Affiliation(s)
- Karyne Garcia Tafarelo Moreno
- Laboratório de Urinálise, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
| | - Ariany Carvalho Dos Santos
- Laboratório de Histopatologia, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Rhanany Alan Calloi Palozi
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Lucas Pires Guarnier
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Aline Aparecida Macedo Marques
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Paulo Vitor Moreira Romão
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Bethânia Rosa Lorençone
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Nadla Soares Cassemiro
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal Do Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal Do Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Cleide Adriane Signor Tirloni
- Laboratório de Farmacologia Cardiovascular- LaFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Márcio Eduardo de Barros
- Laboratório de Urinálise, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
2
|
The evolving role of TonEBP as an immunometabolic stress protein. Nat Rev Nephrol 2020; 16:352-364. [PMID: 32157251 DOI: 10.1038/s41581-020-0261-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Tonicity-responsive enhancer-binding protein (TonEBP), which is also known as nuclear factor of activated T cells 5 (NFAT5), was discovered 20 years ago as a transcriptional regulator of the cellular response to hypertonic (hyperosmotic salinity) stress in the renal medulla. Numerous studies since then have revealed that TonEBP is a pleiotropic stress protein that is involved in a range of immunometabolic diseases. Some of the single-nucleotide polymorphisms (SNPs) in TONEBP introns are cis-expression quantitative trait loci that affect TONEBP transcription. These SNPs are associated with increased risk of type 2 diabetes mellitus, diabetic nephropathy, inflammation, high blood pressure and abnormal plasma osmolality, indicating that variation in TONEBP expression might contribute to these phenotypes. In addition, functional studies have shown that TonEBP is involved in the pathogenesis of rheumatoid arthritis, atherosclerosis, diabetic nephropathy, acute kidney injury, hyperlipidaemia and insulin resistance, autoimmune diseases (including type 1 diabetes mellitus and multiple sclerosis), salt-sensitive hypertension and hepatocellular carcinoma. These pathological activities of TonEBP are in contrast to the protective actions of TonEBP in response to hypertonicity, bacterial infection and DNA damage induced by genotoxins. An emerging theme is that TonEBP is a stress protein that mediates the cellular response to a range of pathological insults, including excess caloric intake, inflammation and oxidative stress.
Collapse
|