1
|
Factor VII Activating Protease (FSAP) and Its Importance in Hemostasis—Part I: FSAP Structure, Synthesis and Activity Regulation: A Narrative Review. Int J Mol Sci 2023; 24:ijms24065473. [PMID: 36982544 PMCID: PMC10052181 DOI: 10.3390/ijms24065473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Factor VII activating protease (FSAP) was first isolated from human plasma less than 30 years ago. Since then, many research groups have described the biological properties of this protease and its role in hemostasis and other processes in humans and other animals. With the progress of knowledge about the structure of FSAP, several of its relationships with other proteins or chemical compounds that may modulate its activity have been explained. These mutual axes are described in the present narrative review. The first part of our series of manuscripts on FSAP describes the structure of this protein and the processes leading to the enhancement and inhibition of its activities. The following parts, II and III, concern the role of FSAP in hemostasis and in the pathophysiology of human diseases, with particular emphasis on cardiovascular diseases.
Collapse
|
2
|
Cui XY, Stavik B, Thiede B, Sandset PM, Kanse SM. FSAP Protects against Histone-Mediated Increase in Endothelial Permeability In Vitro. Int J Mol Sci 2022; 23:ijms232213706. [PMID: 36430180 PMCID: PMC9690979 DOI: 10.3390/ijms232213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Factor-VII-activating protease (FSAP) is involved in the regulation of hemostasis and inflammation. Extracellular histones play a role in inflammation and the conversion of latent pro-FSAP into active FSAP. FSAP has been shown to regulate endothelial permeability, but the mechanisms are not clear. Here, we have investigated the effects of FSAP on endothelial permeability in vitro. A mixture of histones from calf thymus stimulated permeability, and the wild-type (WT) serine protease domain (SPD) of FSAP blocked this effect. WT-SPD-FSAP did not influence permeability on its own, nor that stimulated by thrombin or vascular endothelial growth factor (VEGF)-A165. Histones induced a large-scale rearrangement of the junction proteins VE-cadherin and zona occludens-1 from a clear junctional distribution to a diffuse pattern. The presence of WT-SPD-FSAP inhibited these changes. Permeability changes by histones were blocked by both TLR-2 and TLR4 blocking antibodies. Histones upregulated the expression of TLR-2, but not TLR-4, in HUVEC cells, and WT-SPD-FSAP abolished the upregulation of TLR-2 expression. An inactive variant, Marburg I (MI)-SPD-FSAP, did not have any of these effects. The inhibition of histone-mediated permeability may be an important function of FSAP with relevance to sepsis, trauma, and stroke and the need to be investigated further in in vivo experiments.
Collapse
Affiliation(s)
- Xue Yan Cui
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| | - Benedicte Stavik
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sandip M. Kanse
- Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
3
|
Berge-Seidl S, Nielsen NV, Rodriguez Alfonso AA, Etscheid M, Kandanur SPS, Haug BE, Stensland M, Thiede B, Karacan M, Preising N, Wiese S, Ständker L, Declerck PJ, Løset GÅ, Kanse SM. Identification of a Phage Display-Derived Peptide Interacting with the N-Terminal Region of Factor VII Activating Protease (FSAP) Enables Characterization of Zymogen Activation. ACS Chem Biol 2022; 17:2631-2642. [PMID: 36070465 PMCID: PMC9486805 DOI: 10.1021/acschembio.2c00538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 01/19/2023]
Abstract
Factor VII Activating protease (FSAP) has a protective effect in diverse disease conditions as inferred from studies in FSAP-/- mice and humans deficient in FSAP activity due to single-nucleotide polymorphism. The zymogen form of FSAP in plasma is activated by extracellular histones that are released during tissue injury or inflammation or by positively charged surfaces. However, it is not clear whether this activation mechanism is specific and amenable to manipulation. Using a phage display approach, we have identified a Cys-constrained 11 amino acid peptide, NNKC9/41, that activates pro-FSAP in plasma. The synthetic linear peptide has a propensity to cyclize through the terminal Cys groups, of which the antiparallel cyclic dimer, but not the monocyclic peptide, is the active component. Other commonly found zymogens in the plasma, related to the hemostasis system, were not activated. Binding studies with FSAP domain deletion mutants indicate that the N-terminus of FSAP is the key interaction site of this peptide. In a monoclonal antibody screen, we identified MA-FSAP-38C7 that prevented the activation of pro-FSAP by the peptide. This antibody bound to the LESLDP sequence (amino acids 30-35) in an intrinsically disordered stretch in the N-terminus of FSAP. The plasma clotting time was shortened by NNKC9/41, and this was reversed by MA-FSAP-38C7, demonstrating the utility of this peptide. Peptide NNKC9/41 will be useful as a tool to delineate the molecular mechanism of activation of pro-FSAP, elucidate its biological role, and provide a starting point for the pharmacological manipulation of FSAP activity.
Collapse
Affiliation(s)
| | - Nis Valentin Nielsen
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| | | | | | | | - Bengt Erik Haug
- Department
of Chemistry and Center for Pharmacy, University
of Bergen, 5007 Bergen, Norway
| | - Maria Stensland
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department
of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Paul J. Declerck
- Department
of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Geir Åge Løset
- Department
of Biosciences, University of Oslo, 0371 Oslo, Norway
- Nextera
AS, 0349 Oslo, Norway
| | - Sandip M. Kanse
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
4
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
5
|
Künnapuu J, Bokharaie H, Jeltsch M. Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs. BIOLOGY 2021; 10:167. [PMID: 33672235 PMCID: PMC7926383 DOI: 10.3390/biology10020167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph-angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. At least five different proteases mediate the activating cleavage of VEGF-C: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the "mature" growth factors, which differ in affinity and receptor activation potential. The "default" VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D, and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by distinct proteases. During embryonic development, ADAMTS3 activates VEGF-C. The other activating proteases are likely important for non-developmental lymphangiogenesis during, e.g., tissue regeneration, inflammation, immune response, and pathological tumor-associated lymphangiogenesis. The better we understand these events at the molecular level, the greater our chances of developing successful therapies targeting VEGF-C and VEGF-D for diseases involving the lymphatics such as lymphedema or cancer.
Collapse
Affiliation(s)
- Jaana Künnapuu
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Honey Bokharaie
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Michael Jeltsch
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
| |
Collapse
|
6
|
Deindl E, Quax PHA. Arteriogenesis and Therapeutic Angiogenesis in Its Multiple Aspects. Cells 2020; 9:cells9061439. [PMID: 32531915 PMCID: PMC7349222 DOI: 10.3390/cells9061439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany
- Correspondence: (E.D.); (P.H.A.Q.); Tel.: +49-89-2180-76504 (E.D.); +31-71-526-1584 (P.H.A.Q.)
| | - Paul H. A. Quax
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence: (E.D.); (P.H.A.Q.); Tel.: +49-89-2180-76504 (E.D.); +31-71-526-1584 (P.H.A.Q.)
| |
Collapse
|
7
|
Byskov K, Etscheid M, Kanse SM. Cellular effects of factor VII activating protease (FSAP). Thromb Res 2020; 188:74-78. [PMID: 32087413 DOI: 10.1016/j.thromres.2020.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Factor VII activating protease (FSAP) is a circulating serine protease of broad specificity that is likely to be involved in many pathophysiological processes. The activation of the circulating zymogen form of FSAP by histones, released from damaged cells, underlines its roles in regulating host responses to tissue damage and inflammation. Some of the direct cellular effects of FSAP are mediated through protease-activated receptors (PARs). Knock-down of each one of the four PARs in endothelial cells indicated that PAR-1 and -3 are involved in regulating endothelial permeability in response to FSAP. Overexpression of PARs in cell lines led to the conclusion that PAR-2 and -1 were the main receptors for FSAP. Studies with synthetic peptides and receptor mutants demonstrate that FSAP cleaves PAR-1 and -2 at their canonical cleavage site. However, PAR-1 is not activated by FSAP in all cells, which may be related to other, as yet, undefined factors. Inhibition of apoptosis by FSAP is mediated through PAR-1 and was observed in neurons, astrocytes and A549 cells. FSAP also mediates cellular effects by modulating the activity of growth factors, generation of bradykinin, C5a and C3a generation or histone inactivation. These cellular effects need to be further investigated at the in vivo level.
Collapse
Affiliation(s)
- Kristina Byskov
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|