1
|
Kandhavelu J, Subramanian K, Naidoo V, Sebastianelli G, Doan P, Konda Mani S, Yapislar H, Haciosmanoglu E, Arslan L, Ozer S, Thiyagarajan R, Candeias NR, Penny C, Kandhavelu M, Murugesan A. A novel EGFR inhibitor, HNPMI, regulates apoptosis and oncogenesis by modulating BCL-2/BAX and p53 in colon cancer. Br J Pharmacol 2024; 181:107-124. [PMID: 37183661 PMCID: PMC10952184 DOI: 10.1111/bph.16141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) is the second most lethal disease, with high mortality due to its heterogeneity and chemo-resistance. Here, we have focused on the epidermal growth factor receptor (EGFR) as an effective therapeutic target in CRC and studied the effects of polyphenols known to modulate several key signalling mechanisms including EGFR signalling, associated with anti-proliferative and anti-metastatic properties. EXPERIMENTAL APPROACH Using ligand- and structure-based cheminformatics, we developed three potent, selective alkylaminophenols, 2-[(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl]phenol (THTMP), 2-[(1,2,3,4-tetrahydroquinolin-1-yl)(4-methoxyphenyl)methyl]phenol (THMPP) and N-[2-hydroxy-5-nitrophenyl(4'-methylphenyl)methyl]indoline (HNPMI). These alkylaminophenols were assessed for EGFR interaction, EGFR-pathway modulation, cytotoxic and apoptosis induction, caspase activation and transcriptional and translational regulation. The lead compound HNPMI was evaluated in mice bearing xenografts of CRC cells. KEY RESULTS Of the three alkylaminophenols tested, HNPMI exhibited the lowest IC50 in CRC cells and potential cytotoxic effects on other tumour cells. Modulation of EGFR pathway down-regulated protein levels of osteopontin, survivin and cathepsin S, leading to apoptosis. Cell cycle analysis revealed that HNPMI induced G0/G1 phase arrest in CRC cells. HNPMI altered the mRNA for and protein levels of several apoptosis-related proteins including caspase 3, BCL-2 and p53. HNPMI down-regulated the proteins crucial to oncogenesis in CRC cells. Assays in mice bearing CRC xenografts showed that HNPMI reduced the relative tumour volume. CONCLUSIONS AND IMPLICATIONS HNPMI is a promising EGFR inhibitor for clinical translation. HNPMI regulated apoptosis and oncogenesis by modulating BCL-2/BAX and p53 in CRC cell lines, showing potential as a therapeutic agent in the treatment of CRC.
Collapse
Affiliation(s)
- Jeyalakshmi Kandhavelu
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Kumar Subramanian
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Vivash Naidoo
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Giulia Sebastianelli
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
| | - Phuong Doan
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- BioMediTech Institute and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Science CenterTampere University HospitalTampereFinland
| | - Saravanan Konda Mani
- Research and Publication WingBharath Institute of Higher Education and ResearchChennaiTamil NaduIndia
| | - Hande Yapislar
- Department of PhysiologyAcibadem University School of MedicineAtasehir, IstanbulTurkey
| | - Ebru Haciosmanoglu
- Department of BiophysicsBezmialem Vakıf University School of MedicineFatih, IstanbulTurkey
| | - Leman Arslan
- Department of PhysiologyBezmialem Vakıf University School of MedicineFatih, IstanbulTurkey
| | - Samed Ozer
- Department of PhysiologyAcibadem University School of MedicineAtasehir, IstanbulTurkey
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of MedicinePrince Sattam Bin Abdulaziz UniversityAl‐KharjKingdom of Saudi Arabia
| | - Nuno R. Candeias
- LAQV‐REQUIMTE, Department of ChemistryUniversity of AveiroAveiroPortugal
- Faculty of Engineering and Natural SciencesTampere UniversityTampereFinland
| | - Clement Penny
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Meenakshisundaram Kandhavelu
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- BioMediTech Institute and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Science CenterTampere University HospitalTampereFinland
| | - Akshaya Murugesan
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- Department of BiotechnologyLady Doak CollegeThallakulam, MaduraiIndia
| |
Collapse
|
2
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
3
|
Viswanathan A, Musa A, Murugesan A, Vale JR, Afonso CAM, Mani SK, Yli-Harja O, Candeias NR, Kandhavelu M. Erratum: Viswanathan, A., et al. Battling Glioblastoma: A Novel Tyrosine Kinase Inhibitor with Multi-Dimensional Anti-Tumor Effect (Running Title: Cancer Cells Death Signalling Activation). Cells 2019, 8, 1624. Cells 2020; 9:cells9122631. [PMID: 33297601 PMCID: PMC7762400 DOI: 10.3390/cells9122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
There is an error in the title of the paper [...].
Collapse
Affiliation(s)
- Anisha Viswanathan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMeditech, P.O. Box 553, 33101 Tampere, Finland; (A.V.); (A.M.)
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Aliyu Musa
- Predictive Medicine and Data Analytics Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O. Box 553, 33101 Tampere, Finland;
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMeditech, P.O. Box 553, 33101 Tampere, Finland; (A.V.); (A.M.)
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
- Department of Biotechnology, Lady Doak College, Madurai 625002, India
| | - João R. Vale
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Carlos A. M. Afonso
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Saravanan Konda Mani
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Olli Yli-Harja
- Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O. Box 553, 33101 Tampere, Finland;
- Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98103-8904, USA
| | - Nuno R. Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland;
- Correspondence: (N.R.C.); (M.K.); Tel.: +358-468857306 (N.R.C.); +358-417488772 (M.K.)
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMeditech, P.O. Box 553, 33101 Tampere, Finland; (A.V.); (A.M.)
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence: (N.R.C.); (M.K.); Tel.: +358-468857306 (N.R.C.); +358-417488772 (M.K.)
| |
Collapse
|
4
|
Mutharasu G, Murugesan A, Konda Mani S, Yli-Harja O, Kandhavelu M. Transcriptomic analysis of glioblastoma multiforme providing new insights into GPR17 signaling communication. J Biomol Struct Dyn 2020; 40:2586-2599. [PMID: 33140689 DOI: 10.1080/07391102.2020.1841029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma Multiforme (GBM) is one of the most aggressive malignant tumors in the central nervous system, which arises due to the failure or crosstalk in the signaling networks. GPR17, an orphan G protein-coupled receptor is anticipated to be associated with the biology of the GBM disease progression. In the present study, we have identified the differential expressions of around 170 genes along with GPR17 through the RNA-Seq analysis of 169 GBM samples. Coordinated expression patterns of all other gene products with this receptor were analysed using gene ontology and protein-protein interaction data. Several crucial signaling components and genes that play a significant role in tumor progression have been identified among which GPR17 was found to be significantly interacting with about 30 different pathways. High-throughput molecular docking of GPR17 by homology-based model against differentially expressed proteins, showed effective recognition and binding of PX, SH3, and Ig-like domains besides Gi protein. Pathways of PI3, Src, Ptdn, Ras, cytoplasmic tyrosine kinases, phospholipases, nexins and other proteins possessing these structural domains are identified as critical signaling components of the complex GBM signaling network. Our findings also provide a mechanistic insight of GPR17-T0510-3657 interaction, which potentially regulates the interaction of PX domain and helical mPTS recognition domain-containing proteins. Overall, our results demonstrate that GPR17 mediated signaling networks could be used as a therapeutic target for GBM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gnanavel Mutharasu
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Akshaya Murugesan
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, India
| | - Saravanan Konda Mani
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Olli Yli-Harja
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, USA
| | - Meenakshisundaram Kandhavelu
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Science Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
5
|
Design and synthesis of novel quinic acid derivatives: in vitro cytotoxicity and anticancer effect on glioblastoma. Future Med Chem 2020; 12:1891-1910. [PMID: 33124467 DOI: 10.4155/fmc-2020-0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Quinic acid (QA) is a cyclic polyol exhibiting anticancer properties on several cancers. However, potential role of QA derivatives against glioblastoma is not well established. Methodology & results: Sixteen novel QA derivatives and QA-16 encapsulated poly (lactic-co-glycolic acid) nanoparticles (QA-16-NPs) were screened for their anti-glioblastoma effect using standard cell and molecular biology methods. Presence of a tertiary hydroxy and silylether groups in the lead compound were identified for the antitumor activity. QA-16 have 90% inhibition with the IC50 of 10.66 μM and 28.22 μM for LN229 and SNB19, respectively. The induction of apoptosis is faster with the increased fold change of caspase 3/7 and reactive oxygen species. Conclusion: QA-16 and QA-16-NPs shows similar cytotoxicity effect, providing the opportunity to use QA-16 as a potential chemotherapeutic agent.
Collapse
|