1
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
2
|
Marzban H, Pedram N, Amini P, Gholampour Y, Saranjam N, Moradi S, Rahvarian J. Immunobiology of cancer stem cells and their immunoevasion mechanisms. Mol Biol Rep 2023; 50:9559-9573. [PMID: 37776412 DOI: 10.1007/s11033-023-08768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 10/02/2023]
Abstract
Cancer stem cells (CSCs) defined as a small fraction of cells within malignancies have been isolated from tumors with different histological origins with stem related characteristics such as self-replicating potential, tumorigenesis, and therapy resistance. The dynamic communication between CSCs and tumor microenvironment particularly immune cells orchestrates their fate and plasticity as well as the patient outcome. According to recent evidence, it has been reported that they harness different immunological pathways to escape immunosurveillance and express aberrantly immunomodulatory agents or decreased levels of factors forming antigen presenting machinery (APM), subsequently followed by impaired antigen presentation and suppressed immune detection. As effective therapies are expected to be able to eradicate CSCs, mechanistic understanding of such interactions can provide insights into causes of therapy failure particularly in immunotherapy. Also, it can contribute to enhance the practical interventions against CSCs and their immunomodulatory features resulting in CSCs eradication and improving patient clinical outcome. The aim of this review is to explain the present knowledge regarding the immunobiology of CSCs and the immunoevasion mechanisms they use.
Collapse
Affiliation(s)
- Havva Marzban
- Department of Immunology, Mayo Clinic, Scottsdale, US.
| | - Nastaran Pedram
- Faculty of Veterinary Medicine, Department of Clinical Science, Shiraz University, Shiraz, Iran
| | - Parnian Amini
- Department of Veterinary Laboratory Science, Islamic Azad University, Rasht Branch, Rasht, Iran
| | - Yasaman Gholampour
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Razi University, Kermanshah, Iran
| | | | - Samira Moradi
- Faculty of Medical Science, Department of Medicine, Hormozgan University, Bandar Abbas, Iran
| | - Jeiran Rahvarian
- Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Bartkeviciene A, Jasukaitiene A, Zievyte I, Stukas D, Ivanauskiene S, Urboniene D, Maimets T, Jaudzems K, Vitkauskiene A, Matthews J, Dambrauskas Z, Gulbinas A. Association between AHR Expression and Immune Dysregulation in Pancreatic Ductal Adenocarcinoma: Insights from Comprehensive Immune Profiling of Peripheral Blood Mononuclear Cells. Cancers (Basel) 2023; 15:4639. [PMID: 37760608 PMCID: PMC10526859 DOI: 10.3390/cancers15184639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), has an immune suppressive environment that allows tumour cells to evade the immune system. The aryl-hydrocarbon receptor (AHR) is a transcription factor that can be activated by certain exo/endo ligands, including kynurenine (KYN) and other tryptophan metabolites. Once activated, AHR regulates the expression of various genes involved in immune responses and inflammation. Previous studies have shown that AHR activation in PDAC can have both pro-tumorigenic and anti-tumorigenic effects, depending on the context. It can promote tumour growth and immune evasion by suppressing anti-tumour immune responses or induce anti-tumour effects by enhancing immune cell function. In this study involving 30 PDAC patients and 30 healthy individuals, peripheral blood samples were analysed. PDAC patients were categorized into Low (12 patients) and High/Medium (18 patients) AHR groups based on gene expression in peripheral blood mononuclear cells (PBMCs). The Low AHR group showed distinct immune characteristics, including increased levels of immune-suppressive proteins such as PDL1, as well as alterations in lymphocyte and monocyte subtypes. Functional assays demonstrated changes in phagocytosis, nitric oxide production, and the expression of cytokines IL-1, IL-6, and IL-10. These findings indicate that AHR's expression level has a crucial role in immune dysregulation in PDAC and could be a potential target for early diagnostics and personalised therapeutics.
Collapse
Affiliation(s)
- Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Inga Zievyte
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Darius Stukas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Sandra Ivanauskiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Daiva Urboniene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| |
Collapse
|
4
|
Castagnoli L, Corso S, Franceschini A, Raimondi A, Bellomo SE, Dugo M, Morano F, Prisciandaro M, Brich S, Belfiore A, Vingiani A, Di Bartolomeo M, Pruneri G, Tagliabue E, Giordano S, Pietrantonio F, Pupa SM. Fatty acid synthase as a new therapeutic target for HER2-positive gastric cancer. Cell Oncol (Dordr) 2023; 46:661-676. [PMID: 36753044 PMCID: PMC10205874 DOI: 10.1007/s13402-023-00769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/09/2023] Open
Abstract
PURPOSE Trastuzumab is an HER2-specific agent approved as the gold-standard therapy for advanced HER2-positive (HER2+) gastric cancer (GC), but the high rate and rapid appearance of resistance limit its clinical efficacy, resulting in the need to identify new vulnerabilities. Defining the drivers influencing HER2+ cancer stem cell (CSC) maintenance/survival could represent a clinically useful strategy to counteract tumor growth and therapy resistance. Accumulating evidence show that targeting crucial metabolic hubs, as the fatty acid synthase (FASN), may be clinically relevant. METHODS FASN protein and transcript expression were examined by WB and FACS and by qRT-PCR and GEP analyses, respectively, in trastuzumab-sensitive and trastuzumab-resistant HER2+ GC cell lines cultured in adherent (2D) or gastrosphere promoting (3D) conditions. Molecular data were analyzed in silico in public HER2+ GC datasets. The effectiveness of the FASN inhibitor TVB3166 to overcome anti-HER2 therapy resistance was tested in vitro in gastrospheres forming efficiency bioassays and in vivo in mice bearing trastuzumab-resistant GC cells. RESULTS We compared the transcriptome profiles of HER2+ GC cells cultured in 2D versus 3D conditions finding a significant enrichment of FASN in 3D cultures. FASN upregulation significantly correlated with high stemness score and poor prognosis in HER2+ GC cases. TVB3166 treatment significantly decreased GCSCs in all cell targets. HER2 and FASN cotargeting significantly decreased the capability to form gastrospheres versus monotherapy and reduced the in vivo growth of trastuzumab-resistant GC cells. CONCLUSION Our findings indicate that cotargeting HER2 and FASN increase the benefit of anti-HER2 therapy representing a new opportunity for metabolically combating trastuzumab-resistant HER2+ GC.
Collapse
Affiliation(s)
- Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Alma Franceschini
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Sara Erika Bellomo
- Department of Oncology, University of Torino, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Matteo Dugo
- Department of Medical Oncology-Breast Cancer Unit Clinical Translational and Immunotherapy Research, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Michele Prisciandaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Antonino Belfiore
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| | - Serenella M Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| |
Collapse
|
5
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Zhou G, Lv X, Zhong X, Ying W, Li W, Feng Y, Xia Q, Li J, Jian S, Leng Z. Suspension culture strategies to enrich colon cancer stem cells. Oncol Lett 2023; 25:116. [PMID: 36844615 PMCID: PMC9950343 DOI: 10.3892/ol.2023.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 11/16/2021] [Indexed: 02/09/2023] Open
Abstract
How to efficiently obtain high-purity cancer stem cells (CSCs) has been the basis of CSC research, but the optimal conditions for serum-free suspension culture of CSCs are still unclear. The present study aimed to define the optimal culture medium composition and culture time for the enrichment of colon CSCs via suspension culture. Suspension cell cultures of colon cancer DLD-1 cells were prepared using serum-free medium (SFM) containing variable concentrations of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to produce spheroids. Culture times were set at 10, 20 and 30 days. A total of nine different concentrations of EGF and bFGF were added to SFM to generate nine experimental groups. The proportions of CD44+, CD133+, and CD44+CD133+ double-positive spheroid cells were detected via flow cytometry. mRNA expression of stemness-, epithelial-mesenchymal transition- and Wnt/β-catenin pathway-associated genes was determined via reverse transcription-quantitative PCR. Self-renewal ability was evaluated by a sphere-forming assay. Tumorigenesis was studied in vitro using a colony formation assay and in vivo via subcutaneous cell injection in nude mice. It was found that the highest expression proportions of CD133+ and CD44+ spheroid cells were observed in group (G)9 (20 ng/ml EGF + 20 ng/ml bFGF) at 30 days (F=123.554 and 99.528, respectively, P<0.001), CD133+CD44+ cells were also observed in G9 at 30 days (and at 10 days in G3 and 20 days in G6; F=57.897, P<0.001). G9 at 30 days also displayed the highest expression of Krüppel-like factor 4, leucine-rich repeat-containing G protein-coupled receptor 5, CD44, CD133, Vimentin and Wnt-3a (F=22.682, 25.401, 3.272, 7.852, 13.331 and 17.445, respectively, P<0.001) and the lowest expression of E-cadherin (F=10.851, P<0.001). G9 at 30 days produced the highest yield of cell spheroids, as determined by a sphere forming assay (F=19.147, P<0.001); colony formation assays also exhibited the greatest number of colonies derived from G9 spheroids at 30 days (F=60.767, P<0.01), which also generated the largest mean tumor volume in the subcutaneous tumorigenesis xenograft model (F=12.539, P<0.01). In conclusion, 20 ng/ml EGF + 20 ng/ml bFGF effectively enriched colon CSCs when added to suspension culture for 30 days, and conferred the highest efficiency compared with other combinations.
Collapse
Affiliation(s)
- Guojun Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaojiang Lv
- Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaorong Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Wei Ying
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Wenbo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yanchao Feng
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qinghua Xia
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jianshui Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shunhai Jian
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Professor Shunhai Jian, Department of Pathology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, Sichuan 637000, P.R. China, E-mail:
| | - Zhengwei Leng
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Correspondence to: Professor Zhengwei Leng, Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, 234, Fujiang Road, Nanchong, Sichuan 637000, P.R. China, E-mail:
| |
Collapse
|
7
|
Tan B, Zhang J, Wang W, Ma H, Yang Y. Tumor-suppressive E3 ubiquitin ligase CHIP inhibits the PBK/ERK axis to repress stem cell properties and radioresistance in non-small cell lung cancer. Apoptosis 2022; 28:397-413. [PMID: 36436119 DOI: 10.1007/s10495-022-01789-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
Recently, radioresistant cancer cells surviving radiotherapy have been suggested to show more aggressive phenotypes than parental cells, and the underlying mechanisms may be associated with cancer stem cells. This study provided novel mechanistic insights for E3 ubiquitin ligase CHIP in stem cell properties and radioresistance of non-small cell lung cancer (NSCLC). After bioinformatic prediction for key genes involved, NSCLC tissues and cells were collected to measure the expression of CHIP and PBK. E3 ubiquitin ligase CHIP was poorly expressed, while PBK was highly expressed in NSCLC tissues and cells. CHIP reduced the protein stability of PBK through the ubiquitin-protease pathway to repress the activation of ERK pathway. Based on the gain- or loss-of-function experiments, it was noted that restoration of CHIP curtailed stem cell properties and radioresistance in NSCLC, as manifested by inhibited sphere formation and cell proliferation, decreased number of CD133+CD44+ cells and expression of OCT4, SOX2, and NANOG, as well as facilitated apoptosis of NSCLC cells. Besides, in vivo animal experiments further confirmed that CHIP restrained tumorigenic ability and improved radiosensitivity of NSCLC cells by inhibiting PBK/ERK axis. Collectively, CHIP suppressed stem cell properties and radioresistance of NSCLC cells by inhibiting PBK/ERK axis, therefore offering a potential therapeutic target for enhancing efficacy of radiotherapy.
Collapse
Affiliation(s)
- Bo Tan
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China.
| | - Jingwei Zhang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China
| | - Wen Wang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yuanyuan Yang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China
| |
Collapse
|
8
|
Bhuyan S, Pal B, Pathak L, Saikia PJ, Mitra S, Gayan S, Mokhtari RB, Li H, Ramana CV, Baishya D, Das B. Targeting hypoxia-induced tumor stemness by activating pathogen-induced stem cell niche defense. Front Immunol 2022; 13:933329. [PMID: 36248858 PMCID: PMC9559576 DOI: 10.3389/fimmu.2022.933329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor hypoxia and oxidative stress reprograms cancer stem cells (CSCs) to a highly aggressive and inflammatory phenotypic state of tumor stemness. Previously, we characterized tumor stemness phenotype in the ATP Binding Cassette Subfamily G Member 2 (ABCG2)–positive migratory side population (SPm) fraction of CSCs exposed to extreme hypoxia followed by reoxygenation. Here, we report that post-hypoxia/reoxygenation SPm+/ABCG2+ CSCs exerts defense against pathogen invasion that involves bystander apoptosis of non-infected CSCs. In an in vitro assay of cancer cell infection by Bacillus Calmette Guerin (BCG) or mutant Mycobacterium tuberculosis (Mtb) strain 18b (Mtb-m18b), the pathogens preferentially replicated intracellular to SPm+/ABCG2+ CSCs of seven cell lines of diverse cancer types including SCC-25 oral squamous cancer cell line. The conditioned media (CM) of infected CSCs exhibited direct anti-microbial activity against Mtb and BCG, suggesting niche defense against pathogen. Importantly, the CM of infected CSCs exhibited marked in vitro bystander apoptosis toward non-infected CSCs. Moreover, the CM-treated xenograft bearing mice showed 10- to 15-fold reduction (p < 0.001; n = 7) in the number of CSCs residing in the hypoxic niches. Our in vitro studies indicated that BCG-infected SPm+/ABCG2+ equivalent EPCAM+/ABCG2+ CSCs of SCC-25 cells underwent pyroptosis and released a high mobility group box protein 1 (HMGB1)/p53 death signal into the tumor microenvironment (TME). The death signal can induce a Toll-like receptor 2/4–mediated bystander apoptosis in non-infected CSCs by activating p53/MDM2 oscillation and subsequent activation of capase-3–dependent intrinsic apoptosis. Notably, SPm+/ABCG2+ but not SP cells undergoing bystander apoptosis amplified the death signal by further release of HMGB1/p53 complex into the TME. These results suggest that post-hypoxia SPm+/ABCG2+ CSCs serve a functional role as a tumor stemness defense (TSD) phenotype to protect TME against bacterial invasion. Importantly, the CM of TSD phenotype undergoing bystander apoptosis may have therapeutic uses against CSCs residing in the hypoxic niche.
Collapse
Affiliation(s)
- Seema Bhuyan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bidisha Pal
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Sukanya Gayan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Reza Bayat Mokhtari
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Hong Li
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Chilakamarti V. Ramana
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
- *Correspondence: Bikul Das,
| |
Collapse
|
9
|
De Santis F, Romero-Cordoba SL, Castagnoli L, Volpari T, Faraci S, Fucà G, Tagliabue E, De Braud F, Pupa SM, Di Nicola M. BCL6 and the Notch pathway: a signaling axis leading to a novel druggable biotarget in triple negative breast cancer. Cell Oncol (Dordr) 2022; 45:257-274. [PMID: 35357654 DOI: 10.1007/s13402-022-00663-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The transcriptional repressor B-cell lymphoma 6 (BCL6) is dysregulated in several neoplasms, but its role in triple negative breast cancer (TNBC), a highly aggressive subtype which lacks effective treatment, is unclear. The presence of intratumoral cancer stem cells (CSCs) is a main cause of tumor relapse. The Notch signaling pathway is crucial for regulating CSC self-renewal and promoting breast cancer (BC) development and resistance to anticancer therapies. Here, we investigated signaling cascades of BCL6 in the CSC compartment of TNBCs, and the mechanisms that govern its activity, mainly through Notch signaling. METHODS Gene expression, somatic copy number alterations and clinical data from the Cancer Genome Atlas and METABRIC were accessed through the Xena and cbioportal browsers. Public transcriptome profiles from TNBC datasets were retrieved from the Gene Expression Omnibus. Mammosphere formation efficiency was calculated after BCL6 knockdown via transient siRNA transfection, stable silencing or pharmacological inhibition. The effects exhibited via BCL6 inhibition in putative TNBC stem-like cells were evaluated by immunofluorescence and qRT-PCR analyses. Chromatin immunoprecipitation experiments were performed to validate a putative BCL6 responsive element located in the first intron of the Numb gene and to define the circuit of corepressors engaged by BCL6 following its inhibition. Immunoprecipitation assays were carried out to investigate a novel interaction at the basis of BCL6 control of CSC activity in TNBC. RESULTS In silico analyses of benchmarked public datasets revealed a significant enrichment of BCL6 in cancer stemness related pathways, particularly of Notch signaling in TNBC. In vitro stable inhibition of BCL6 significantly reduced tumor cell growth and, accordingly, we found that the mammosphere formation efficiency of BCL6 silenced cells was significantly impaired by pharmacological inhibition of Notch signaling. BCL6 was found to be expressed at significantly higher levels in TNBC mammospheres than in their adherent counterparts, and loss of BCL6 function significantly decreased mammosphere formation with preferential targeting of CD44-positive versus ALDH-positive stem-like cells. Functional interplay between BCL6 and the chromatin remodeling factor EZH2 triggered the BCL6/Notch stemness signaling axis via inhibition of Numb transcription. CONCLUSIONS Our results may be instrumental for the prospective design of combination treatment strategies that selectively target novel TNBC-associated biomarker(s) whose activity is implicated in the regulation of cancer stemness (such as BCL6) and molecules in developmentally conserved signaling pathways (such as Notch) to achieve long-lasting tumor control and improve patient outcomes.
Collapse
Affiliation(s)
- Francesca De Santis
- Unit of Immunotherapy and Anticancer Innovative Therapeutics, Department of Medical Oncology and Hematology Fondazione, IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Sandra L Romero-Cordoba
- Department of Genomic Medicine and Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Biochemistry Department, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Tatiana Volpari
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Simona Faraci
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Unit of Immunotherapy and Anticancer Innovative Therapeutics, Department of Medical Oncology and Hematology Fondazione, IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Filippo De Braud
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.,Department of Oncology and Oncohematology, University of Milan, Milan, Italy
| | - Serenella M Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Massimo Di Nicola
- Unit of Immunotherapy and Anticancer Innovative Therapeutics, Department of Medical Oncology and Hematology Fondazione, IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| |
Collapse
|
10
|
Xu Y, Liao W, Luo Q, Yang D, Pan M. Histone Acetylation Regulator-Mediated Acetylation Patterns Define Tumor Malignant Pathways and Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol 2022; 13:761046. [PMID: 35145517 PMCID: PMC8821108 DOI: 10.3389/fimmu.2022.761046] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Histone acetylation modification is one of the most common epigenetic methods used to regulate chromatin structure, DNA repair, and gene expression. Existing research has focused on the importance of histone acetylation in regulating tumorigenicity, tumor progression, and tumor microenvironment (TME) but has not explored the potential roles and interactions of histone acetylation regulators in TME cell infiltration, drug sensitivity, and immunotherapy. Methods The mRNA expression and genetic alterations of 36 histone acetylation regulators were analyzed in 1599 hepatocellular carcinoma (HCC) samples. The unsupervised clustering method was used to identify the histone acetylation patterns. Then, based on their differentially expressed genes (DEGs), an HAscore model was constructed to quantify the histone acetylation patterns and related subtypes of individual samples. Lastly, the relationship between HAscore and transcription background, tumor clinical features, characteristics of TME, drug response, and efficacy of immunotherapy were analyzed. Results We identified three histone acetylation patterns characterized by high, medium, and low HAscore. Patients with HCC in the high HAscore group experienced worse overall survival time, and the cancer-related malignant pathways were more active in the high HAscore group, comparing to the low HAscore group. The high HAscore group was characterized by an immunosuppressive subtype because of the high infiltration of immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells. Following validation, the HAscore was highly correlated with the sensitivity of anti-tumor drugs; 116 therapeutic agents were found to be associated with it. The HAscore was also correlated with the therapeutic efficacy of the PD-L1 and PD-1 blockade, and the response ratio was significantly higher in the low HAscore group. Conclusion To the best of our knowledge, our study is the first to provide a comprehensive analysis of 36 histone acetylation regulators in HCC. We found close correlations between histone acetylation patterns and tumor malignant pathways and TME. We also analyzed the therapeutic value of the HAscore in targeted therapy and immunotherapy. This work highlights the interactions and potential clinical utility of histone acetylation regulators in treatment of HCC and improving patient outcomes.
Collapse
Affiliation(s)
- Yuyan Xu
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Liao
- The Unit of Hepatobiliary Surgery, The General Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Luo
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of General Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Dinghua Yang
- The Unit of Hepatobiliary Surgery, The General Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Dinghua Yang, ; Mingxin Pan,
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Dinghua Yang, ; Mingxin Pan,
| |
Collapse
|
11
|
Cancer Stem Cells and Their Vesicles, Together with Other Stem and Non-Stem Cells, Govern Critical Cancer Processes: Perspectives for Medical Development. Int J Mol Sci 2022; 23:ijms23020625. [PMID: 35054811 PMCID: PMC8775347 DOI: 10.3390/ijms23020625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Stem cells, identified several decades ago, started to attract interest at the end of the nineties when families of mesenchymal stem cells (MSCs), concentrated in the stroma of most organs, were found to participate in the therapy of many diseases. In cancer, however, stem cells of high importance are specific to another family, the cancer stem cells (CSCs). This comprehensive review is focused on the role and the mechanisms of CSCs and of their specific extracellular vesicles (EVs), which are composed of both exosomes and ectosomes. Compared to non-stem (normal) cancer cells, CSCs exist in small populations that are preferentially distributed to the niches, such as minor specific tissue sites corresponding to the stroma of non-cancer tissues. At niches and marginal sites of other cancer masses, the tissue exhibits peculiar properties that are typical of the tumor microenvironment (TME) of cancers. The extracellular matrix (ECM) includes components different from non-cancer tissues. CSCs and their EVs, in addition to effects analogous to those of MSCs/EVs, participate in processes of key importance, specific to cancer: generation of distinct cell subtypes, proliferation, differentiation, progression, formation of metastases, immune and therapy resistance, cancer relapse. Many of these, and other, effects require CSC cooperation with surrounding cells, especially MSCs. Filtered non-cancer cells, especially macrophages and fibroblasts, contribute to collaborative cancer transition/integration processes. Therapy developments are mentioned as ongoing preclinical initiatives. The preliminary state of clinical medicine is presented in terms of both industrial development and future treatments. The latter will be administered to specific patients together with known drugs, with the aim of eradicating their tumor growth and metastases.
Collapse
|
12
|
Gong Q, Yu H, Ding G, Ma J, Wang Y, Cheng X. Suppression of stemness and enhancement of chemosensibility in the resistant melanoma were induced by Astragalus polysaccharide through PD-L1 downregulation. Eur J Pharmacol 2021; 916:174726. [PMID: 34954232 DOI: 10.1016/j.ejphar.2021.174726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Chemotherapy is commonly used in the clinical treatment of melanoma, but it is prone to resistance leading to the poor effectiveness. The mechanisms of resistance are complicated including the cancer stemness. Astragalus polysaccharide (APS) is one of the active components of traditional Chinese herbal medicine Astragalus Membranaceus. Our previous work was reported that APS had an inhibitory effect on the stemness of melanoma. In this study we established chemo-resistant melanoma cells and found that expression of stemness genes were upregulated in the resistant melanoma cells. And APS could downregulate expression of stemness genes. Furthermore, APS combined with cisplatin (DDP) could significantly slow down the tumor growth in the mouse model induced by DDP-resistant cells. In addition, we found that programmed death-ligand 1 (PD-L1) expression could be downregulated and the PI3K/AKT signaling could be affected by APS. These results suggested that APS could be a potential candidate in combination with chemotherapeutic agents, which might play a role in reducing the occurrence of resistance and improving the prognosis of melanoma patients.
Collapse
Affiliation(s)
- Qianyi Gong
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
13
|
Kudo-Saito C, Ogiwara Y, Imazeki H, Boku N, Uemura Y, Zhang R, Kawano-Nagatsuma A, Kojima M, Ochiai A. CD11b +DIP2A +LAG3 + cells facilitate immune dysfunction in colorectal cancer. Am J Cancer Res 2021; 11:5428-5439. [PMID: 34873470 PMCID: PMC8640801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, and tumor metastasis is the leading cause of death. Targeting immune inhibitory checkpoint inhibitory pathways has attracted great attention, since the therapeutic efficacy induced by the specific blocking antibodies has been demonstrated even in metastatic CRC patients. However, the clinical outcome is low in many cases, and thus more effective treatments are needed in the clinical settings. A SPARC family member follistatin-like 1 (FSTL1) is known as a key driver of tumor metastasis in various types of cancer. However, the immunological roles of the FSTL1 in the CRC pathogenesis remain to be elucidated. In this study, we investigated the molecular mechanisms underlying the refractory FSTL1+ CRC using murine and human FSTL1-transduced CRC cells. Also, based on the results, we evaluated anti-tumor efficacy induced by agents targeting the identified molecules using murine CRC metastasis models, and validated the clinical relevancy of the basic findings using tumor tissues and peripheral blood obtained from CRC patients. FSTL1 transduction conferred EMT-like properties, such as low proliferative (dormant) and high invasive abilities, on tumor cells. When the transfectants were subcutaneously implanted in mice, CD11b+DIP2A+LAG3+ cells were abundantly expanded locally and systemically in the mice. Simultaneously, apoptotic T cells increased and were lastly excluded from the tumor tissues, allowing tumor aggravation leading to resistance to anti-PD1/PDL1 treatment. Blocking FSTL1 and LAG3, however, significantly suppressed the apoptosis induction, and successfully induced anti-tumor immune responses in the CRC metastasis models. Both treatments synergized in providing better prognosis of the mice. FSTL1 was significantly upregulated in tumor tissues and peripheral blood of CRC patients, and the CD11b+DIP2A+LAG3+ cells were significantly expanded in the PBMCs as compared to those of healthy donors. The expansion level was significantly correlated with decrease of potent Ki67+GZMB+ CTLs. These results suggest that the FSTL1-induced CD11b+DIP2A+LAG3+ cells are a key driver of immune dysfunction in CRC. Targeting the FSTL1-LAG3 axis may be a promising strategy for treating metastatic CRC, and anti-FSTL1/LAG3 combination regimen may be practically useful in the clinical settings.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo, Japan
| | - Yamato Ogiwara
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo, Japan
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo, Japan
- Division of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo, Japan
| | - Narikazu Boku
- Division of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| | - Akiko Kawano-Nagatsuma
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| | - Atsushi Ochiai
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| |
Collapse
|
14
|
Pupa SM, Ligorio F, Cancila V, Franceschini A, Tripodo C, Vernieri C, Castagnoli L. HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-Positive Breast Cancer Aggressiveness and Therapy Refractoriness. Cancers (Basel) 2021; 13:cancers13194778. [PMID: 34638263 PMCID: PMC8507865 DOI: 10.3390/cancers13194778] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer (BC) is not a single disease, but a group of different tumors, and altered HER2 expression defines a particularly aggressive subtype. Although HER2 pharmacological inhibition has dramatically improved the prognosis of HER2-positive BC patients, there is still an urgent need for improved knowledge of HER2 biology and mechanisms underlying HER2-driven aggressiveness and drug susceptibility. Emerging data suggest that the clinical efficacy of molecularly targeted therapies is related to their ability to target breast cancer stem cells (BCSCs), a population that is not only self-sustaining and able to differentiate into distinct lineages, but also contributes to tumor growth, aggressiveness, metastasis and treatment resistance. The aim of this review is to provide an overview of how the full-length HER2 receptor, the d16HER2 splice variant and the truncated p95HER2 variants are involved in the regulation and maintenance of BCSCs. Abstract HER2 overexpression/amplification occurs in 15–20% of breast cancers (BCs) and identifies a highly aggressive BC subtype. Recent clinical progress has increased the cure rates of limited-stage HER2-positive BC and significantly prolonged overall survival in patients with advanced disease; however, drug resistance and tumor recurrence remain major concerns. Therefore, there is an urgent need to increase knowledge regarding HER2 biology and implement available treatments. Cancer stem cells (CSCs) represent a subset of malignant cells capable of unlimited self-renewal and differentiation and are mainly considered to contribute to tumor onset, aggressiveness, metastasis, and treatment resistance. Seminal studies have highlighted the key role of altered HER2 signaling in the maintenance/enrichment of breast CSCs (BCSCs) and elucidated its bidirectional communication with stemness-related pathways, such as the Notch and Wingless/β-catenin cascades. d16HER2, a splice variant of full-length HER2 mRNA, has been identified as one of the most oncogenic HER2 isoform significantly implicated in tumorigenesis, epithelial-mesenchymal transition (EMT)/stemness and the response to targeted therapy. In addition, expression of a heterogeneous collection of HER2 truncated carboxy-terminal fragments (CTFs), collectively known as p95HER2, identifies a peculiar subgroup of HER2-positive BC with poor prognosis, with the p95HER2 variants being able to regulate CSC features. This review provides a comprehensive overview of the current evidence regarding HER2-/d16HER2-/p95HER2-positive BCSCs in the context of the signaling pathways governing their properties and describes the future prospects for targeting these components to achieve long-lasting tumor control.
Collapse
Affiliation(s)
- Serenella M. Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
- Correspondence: ; Tel.: +39-022-390-2573; Fax: +39-022-390-2692
| | - Francesca Ligorio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (F.L.); or (C.V.)
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy; (V.C.); (C.T.)
| | - Alma Franceschini
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy; (V.C.); (C.T.)
| | - Claudio Vernieri
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (F.L.); or (C.V.)
- IFOM the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
| |
Collapse
|
15
|
Li C, Qiu Q, Gao X, Yan X, Fan C, Luo X, Liu X, Wang S, Lai X, Song Y, Deng Y. Sialic acid conjugate-modified liposomal platform modulates immunosuppressive tumor microenvironment in multiple ways for improved immune checkpoint blockade therapy. J Control Release 2021; 337:393-406. [PMID: 34171446 DOI: 10.1016/j.jconrel.2021.06.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
Immune checkpoint blockade (ICB) treatment is promising for the clinical therapy of numerous malignancies. However, most cancer patients rarely benefit from such single-agent immunotherapies because of the complexity of both the tumor and tumor microenvironment. A tumor-specific liposomal vehicle (DOX-SAL) modified with a sialic acid-cholesterol conjugate (SA-CH) and remotely loaded with doxorubicin (DOX) is herein reported for improving chemoimmunotherapy. The intravenous administration of DOX-SAL dramatically downregulates tumor-associated macrophage (TAM)-mediated immunosuppression, inhibits immunoregulatory functions, and promotes intratumoral infiltration of CD8+ T cells. Compared to conventional liposomes, DOX-SAL-mediated combination therapy with a PD-1-blocking monoclonal antibody (aPD-1 mAb) almost completely eliminates B16F10 tumors and efficiently inhibits 4T1 tumors. Moreover, cancer stem cells exhibit efficient tumor-initiating, tumor-propagating, and immunosuppressive tumor microenvironment-shaping capabilities. To further improve the treatment efficacy of an immunologically "cold" tumor, metformin (MET), which selectively eradicates breast cancer tumor stem cells, is co-encapsulated with DOX into liposomes to develop DOX/MET-SAL. The combination therapy with DOX/MET-SAL and aPD-1 mAb in a 4T1 orthotopic mouse model indicates their synergetic benefit on primary tumor inhibition, metastasis suppression, and survival rate improvement. Thus, the multifunctional liposomal platform has potential value for ICB combination immunotherapy.
Collapse
Affiliation(s)
- Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qiujun Qiu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Gao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyang Yan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chuizhong Fan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiang Luo
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
16
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
18
|
Special Issue: Micro- and Macro-Environmental Factors in Solid Cancers. Cells 2021; 10:cells10020247. [PMID: 33514006 PMCID: PMC7911398 DOI: 10.3390/cells10020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
|
19
|
Castagnoli L, Tagliabue E, Pupa SM. Inhibition of the Wnt Signalling Pathway: An Avenue to Control Breast Cancer Aggressiveness. Int J Mol Sci 2020; 21:E9069. [PMID: 33260642 PMCID: PMC7730964 DOI: 10.3390/ijms21239069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common tumour in women. Although the introduction of novel therapeutic approaches in clinical practice has dramatically improved the clinical outcome of BC patients, this malignant disease remains the second leading cause of cancer-related death worldwide. The wingless/integrated (Wnt) signalling pathway represents a crucial molecular node relevantly implicated in the regulation of normal somatic stem cells as well as cancer stem cell (CSC) traits and the epithelial-mesenchymal transition cell program. Accordingly, Wnt signalling is heavily dysregulated in BC, and the altered expression of different Wnt genes is significantly associated with cancer-related aggressive behaviours. For all these reasons, Wnt signalling represents a promising therapeutic target currently under clinical investigation to achieve cancer eradication by eliminating CSCs, considered by most to be responsible for tumour initiation, relapse, and drug resistance. In this review, we summarized the current knowledge on the Wnt signalling pathway in BC and have presented evidence implicating the suitability of Wnt targeting in an attempt to improve the outcome of patients without affecting the normal somatic stem cell population.
Collapse
Affiliation(s)
| | | | - Serenella M. Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133 Milan, Italy; (L.C.); (E.T.)
| |
Collapse
|
20
|
Quaglino E, Cavallo F, Conti L. Cancer stem cell antigens as targets for new combined anti-cancer therapies. Int J Biochem Cell Biol 2020; 129:105861. [PMID: 33031926 DOI: 10.1016/j.biocel.2020.105861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
The introduction of immune checkpoint inhibitors (ICI) has ushered in a new, golden age for cancer immunotherapy. However, their clinical success remains limited in several solid cancer types because of the low intrinsic immunogenicity of tumors and the development of immune escape mechanisms. Cancer stem cells (CSC), a small population of cancer cells that are responsible for tumor onset, metastatic spread and relapse after treatment, play a pivotal role in resistance to ICIs. The development of novel therapies that can target CSCs would thus improve the outcomes of current immunotherapy regimens. In this light, vaccines that target CSCs are a promising strategy. This paper briefly describes the immunologic properties of CSCs and their antigenic profile, and reviews current preclinical and clinical approaches that combine CSC-targeting vaccines with different synergistic therapies for the development of more effective antineoplastic treatments.
Collapse
Affiliation(s)
- Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
21
|
Cavallari C, Camussi G, Brizzi MF. Extracellular Vesicles in the Tumour Microenvironment: Eclectic Supervisors. Int J Mol Sci 2020; 21:E6768. [PMID: 32942702 PMCID: PMC7555174 DOI: 10.3390/ijms21186768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The tumour microenvironment (TME) plays a crucial role in the regulation of cell survival and growth by providing inhibitory or stimulatory signals. Extracellular vesicles (EV) represent one of the most relevant cell-to-cell communication mechanism among cells within the TME. Moreover, EV contribute to the crosstalk among cancerous, immune, endothelial, and stromal cells to establish TME diversity. EV contain proteins, mRNAs and miRNAs, which can be locally delivered in the TME and/or transferred to remote sites to dictate tumour behaviour. EV in the TME impact on cancer cell proliferation, invasion, metastasis, immune-escape, pre-metastatic niche formation and the stimulation of angiogenesis. Moreover, EV can boost or inhibit tumours depending on the TME conditions and their cell of origin. Therefore, to move towards the identification of new targets and the development of a novel generation of EV-based targeting approaches to gain insight into EV mechanism of action in the TME would be of particular relevance. The aim here is to provide an overview of the current knowledge of EV released from different TME cellular components and their role in driving TME diversity. Moreover, recent proposed engineering approaches to targeting cells in the TME via EV are discussed.
Collapse
Affiliation(s)
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | | |
Collapse
|
22
|
Guo M, Luo B, Pan M, Li M, Xu H, Zhao F, Dou J. Colorectal cancer stem cell vaccine with high expression of MUC1 serves as a novel prophylactic vaccine for colorectal cancer. Int Immunopharmacol 2020; 88:106850. [PMID: 32777675 DOI: 10.1016/j.intimp.2020.106850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 12/18/2022]
Abstract
Targeted clearance of colorectal cancer stem cells (CCSCs) has become a novel strategy for tumor immunotherapy. Molecule mucin1 (MUC1) is one of targetable cell surface antigens in CCSCs. However, the critical role of MUC1 in anti-tumor effects of CCSC vaccine remains unclear. In the present study, we showed that MUC1 may be required for CCSC vaccine to exert tumor immunity. CD133+CCSCs were isolated from CT26 cell line using a magnetic-activated cell sorting system, and MUC1 shRNA or recombinant plasmid was further used to decrease or increase the expression of MUC1 in CD133+CCSCs. Mice were subcutaneously immunized with the CCSC lysates, MUC1 knockin CCSCs, and MUC1 knockdown CCSCs respectively, followed by a challenge with CT26 cells. We found that CCSC vaccine significantly reduced the tumor growth via a target killing of CCSCs as evidenced by a decrease of CD133+ cells and ALDH+ cells in tumors. Moreover, CCSC vaccine markedly increased the cytotoxicity of NK cells and the splenocytes, and promoted the release of IFN-γ, Perforin, and Granzyme B, and also reduced the TGF-β1 expression. Additionally, CCSC vaccination enhanced the antibody production and decreased the myeloid derived suppressor cells and Treg subsets. More importantly, MUC1 knockdown partly impaired the anti-tumor efficacy of CCSC vaccine, whereas MUC1 overexpression dramatically enhanced the CCSC vaccine immunity. Overall, these results reveal a novel role and molecular mechanisms of MUC1 in CCSC vaccine against colorectal cancer.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Biao Luo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
23
|
Guo M, Luo B, Pan M, Li M, Zhao F, Dou J. MUC1 plays an essential role in tumor immunity of colorectal cancer stem cell vaccine. Int Immunopharmacol 2020; 85:106631. [PMID: 32470879 DOI: 10.1016/j.intimp.2020.106631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Increasing knowledge of colorectal cancer stem cells (CCSCs) and tumor microenvironment improves our understanding of cellular mechanisms involved in the immunity against colorectal cancer (CRC). Tumor associated antigens were evaluated via RNA-seq and bioinformatics analysis, evoking promising targets for tumor immunotherapy. MUC1 has been demonstrated to participate in the maintenance, tumorigenicity, glycosylation and metastasis of CCSCs, which may provide a new priority for CSC vaccination. In the present study, the vaccination with CCSCs with high expression of MUC1 was evaluated in a murine model for the vaccine's immunogenicity and protective efficacy against CRC. CD133+ CCSCs were isolated from SW620 cell line using a magnetic-activated cell sorting system, and shMUC1 was further used to knock down the expression of MUC1 in CD133+ CCSCs. Mice were subcutaneously immunized with the cell lysates of CCSCs and shMUC1 CCSCs, followed by a challenge with SW620 cells at ten days after final vaccination. The results indicated CCSC vaccine significantly reduced the tumor growth via a target killing of CCSCs as evidenced by a decrease of CD133+ cells and ALDH+ cells in tumors. Moreover, CCSC vaccine resulted in the elevated NK cytotoxicity, production of perforin, granzyme B, IFN-γ, memory B cells, and anti-MUC1 antibodies. Of note, MUC1 knockdown partly impaired the anti-tumor efficacy of CCSC vaccine. Importantly, the CCSC vaccine has no toxic damage to organs. Overall, CCSC vaccine could serve as a potent and safe vaccine for CRC treatment, and MUC1 might play an essential role in CCSC vaccine.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Biao Luo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|