1
|
Kehr D, Ritterhoff J, Glaser M, Jarosch L, Salazar RE, Spaich K, Varadi K, Birkenstock J, Egger M, Gao E, Koch WJ, Sauter M, Freichel M, Katus HA, Frey N, Jungmann A, Busch C, Mather PJ, Ruhparwar A, Busch M, Völkers M, Wade RC, Most P. S100A1ct: A Synthetic Peptide Derived From S100A1 Protein Improves Cardiac Performance and Survival in Preclinical Heart Failure Models. Circulation 2025; 151:548-565. [PMID: 39569500 PMCID: PMC11850016 DOI: 10.1161/circulationaha.123.066961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND The EF-hand Ca2+ sensor protein S100A1 has been identified as a molecular regulator and enhancer of cardiac performance. The ability of S100A1 to recognize and modulate the activity of targets such as SERCA2a (sarcoplasmic reticulum Ca2+ ATPase) and RyR2 (ryanodine receptor 2) in cardiomyocytes has mostly been ascribed to its hydrophobic C-terminal α-helix (residues 75-94). We hypothesized that a synthetic peptide consisting of residues 75 through 94 of S100A1 and an N-terminal solubilization tag (S100A1ct) could mimic the performance-enhancing effects of S100A1 and may be suitable as a peptide therapeutic to improve the function of diseased hearts. METHODS We applied an integrative translational research pipeline ranging from in silico computational molecular modeling and in vitro biochemical molecular assays as well as isolated rodent and human cardiomyocyte performance assessments to in vivo safety and efficacy studies in small and large animal cardiac disease models. RESULTS We characterize S100A1ct as a cell-penetrating peptide with positive inotropic and antiarrhythmic properties in normal and failing myocardium in vitro and in vivo. This activity translates into improved contractile performance and survival in preclinical heart failure models with reduced ejection fraction after S100A1ct systemic administration. S100A1ct exerts a fast and sustained dose-dependent enhancement of cardiomyocyte Ca2+ cycling and prevents β-adrenergic receptor-triggered Ca2+ imbalances by targeting SERCA2a and RyR2 activity. In line with the S100A1ct-mediated enhancement of SERCA2a activity, modeling suggests an interaction of the peptide with the transmembrane segments of the sarcoplasmic Ca2+ pump. Incorporation of a cardiomyocyte-targeting peptide tag into S100A1ct (cor-S100A1ct) further enhanced its biological and therapeutic potency in vitro and in vivo. CONCLUSIONS S100A1ct is a promising lead for the development of novel peptide-based therapeutics against heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Dorothea Kehr
- Molecular and Translational Cardiology (D.K., J.R., K.S., K.V., J.B., M.E., A.J., M.B., P.M.), Heidelberg University Hospital (UKHD), Germany
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
| | - Julia Ritterhoff
- Molecular and Translational Cardiology (D.K., J.R., K.S., K.V., J.B., M.E., A.J., M.B., P.M.), Heidelberg University Hospital (UKHD), Germany
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
- Informatics for Life (I4L) consortium, Heidelberg, Germany (J.R., M.G., H.A.K., N.F., R.C.W., P.M.)
| | - Manuel Glaser
- Heidelberg Institute for Theoretical Studies (HITS), Germany (M.G., L.J., R.E.S., R.C.W.)
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany (M.G., R.C.W.)
- Informatics for Life (I4L) consortium, Heidelberg, Germany (J.R., M.G., H.A.K., N.F., R.C.W., P.M.)
| | - Lukas Jarosch
- Heidelberg Institute for Theoretical Studies (HITS), Germany (M.G., L.J., R.E.S., R.C.W.)
| | - Rafael E. Salazar
- Heidelberg Institute for Theoretical Studies (HITS), Germany (M.G., L.J., R.E.S., R.C.W.)
| | - Kristin Spaich
- Molecular and Translational Cardiology (D.K., J.R., K.S., K.V., J.B., M.E., A.J., M.B., P.M.), Heidelberg University Hospital (UKHD), Germany
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
| | - Karl Varadi
- Molecular and Translational Cardiology (D.K., J.R., K.S., K.V., J.B., M.E., A.J., M.B., P.M.), Heidelberg University Hospital (UKHD), Germany
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
| | - Jennifer Birkenstock
- Molecular and Translational Cardiology (D.K., J.R., K.S., K.V., J.B., M.E., A.J., M.B., P.M.), Heidelberg University Hospital (UKHD), Germany
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
| | - Michael Egger
- Molecular and Translational Cardiology (D.K., J.R., K.S., K.V., J.B., M.E., A.J., M.B., P.M.), Heidelberg University Hospital (UKHD), Germany
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA (E.G.)
| | - Walter J. Koch
- Division of Cardiovascular and Thoracic Surgery, Duke University, Durham, NC (W.J.K.)
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology (M.S.), Heidelberg University Hospital (UKHD), Germany
| | - Marc Freichel
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
- Department of Pharmacology, Heidelberg Medical Faculty, Germany (M.F.)
| | - Hugo A. Katus
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
- Informatics for Life (I4L) consortium, Heidelberg, Germany (J.R., M.G., H.A.K., N.F., R.C.W., P.M.)
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
- Informatics for Life (I4L) consortium, Heidelberg, Germany (J.R., M.G., H.A.K., N.F., R.C.W., P.M.)
| | - Andreas Jungmann
- Molecular and Translational Cardiology (D.K., J.R., K.S., K.V., J.B., M.E., A.J., M.B., P.M.), Heidelberg University Hospital (UKHD), Germany
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
| | - Cornelius Busch
- Department of Anesthesiology (C.B.), Heidelberg University Hospital (UKHD), Germany
| | - Paul J. Mather
- Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.J.M.)
| | - Arjang Ruhparwar
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany (A.R.)
| | - Martin Busch
- Molecular and Translational Cardiology (D.K., J.R., K.S., K.V., J.B., M.E., A.J., M.B., P.M.), Heidelberg University Hospital (UKHD), Germany
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
| | - Rebecca C. Wade
- Heidelberg Institute for Theoretical Studies (HITS), Germany (M.G., L.J., R.E.S., R.C.W.)
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany (M.G., R.C.W.)
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany (R.C.W.)
- Informatics for Life (I4L) consortium, Heidelberg, Germany (J.R., M.G., H.A.K., N.F., R.C.W., P.M.)
| | - Patrick Most
- Molecular and Translational Cardiology (D.K., J.R., K.S., K.V., J.B., M.E., A.J., M.B., P.M.), Heidelberg University Hospital (UKHD), Germany
- Department of Cardiology, Angiology and Pneumology (D.K., J.R., K.S., K.V., J.B., M.E., H.A.K., N.F., A.J., M.B., M.V., P.M.), Heidelberg University Hospital (UKHD), Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (D.K., J.R., K.V., M.F., H.A.K., N.F., A.J., M.B., M.V., P.M.)
- Informatics for Life (I4L) consortium, Heidelberg, Germany (J.R., M.G., H.A.K., N.F., R.C.W., P.M.)
- Center for Translational Medicine, Jefferson University, Philadelphia, PA (P.M.)
| |
Collapse
|
2
|
Chen Y, Liu P, Zhong Z, Zhang H, Sun A, Wang Y. STIM1 functions as a proton sensor to coordinate cytosolic pH with store-operated calcium entry. J Biol Chem 2024; 300:107924. [PMID: 39454952 PMCID: PMC11626807 DOI: 10.1016/j.jbc.2024.107924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The meticulous regulation of intracellular pH (pHi) is crucial for maintaining cellular function and homeostasis, impacting physiological processes such as heart rhythm, cell migration, proliferation, and differentiation. Dysregulation of pHi is implicated in various pathologies such as arrhythmias, cancer, and neurodegenerative diseases. Here, we explore the role of STIM1, an ER calcium (Ca2+) sensor mediating Store Operated Ca2+ Entry (SOCE), in sensing pHi changes. Our study reveals that STIM1 functions as a sensor for pHi changes, independent of its Ca2+-binding state. Through comprehensive experimental approaches including confocal microscopy, FRET-based sensors, and mutagenesis, we demonstrate that changes in pHi induce conformational alterations in STIM1, thereby modifying its subcellular localization and activity. We identify two conserved histidines within STIM1 essential for sensing pHi shifts. Moreover, intracellular alkalization induced by agents such as Angiotensin II or NH4Cl enhances STIM1-mediated SOCE, promoting cardiac hypertrophy. These findings reveal a novel facet of STIM1 as a multi-modal stress sensor that coordinates cellular responses to both Ca2+ and pH fluctuations. This dual functionality underscores its potential as a therapeutic target for diseases associated with pH and Ca2+ dysregulation.
Collapse
Affiliation(s)
- Yilan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ziyi Zhong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hanhan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
3
|
Falcón D, Calderón-Sánchez EM, Mayoral-González I, Martín-Bórnez M, Dominguez-Rodriguez A, Gutiérrez-Carretero E, Ordóñez-Fernández A, Rosado JA, Smani T. Inhibition of adenylyl cyclase 8 prevents the upregulation of Orai1 channel, which improves cardiac function after myocardial infarction. Mol Ther 2024; 32:646-662. [PMID: 38291755 PMCID: PMC10928147 DOI: 10.1016/j.ymthe.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The upregulation of Orai1 and subsequent store-operated Ca2+ entry (SOCE) has been associated with adverse cardiac remodeling and heart failure (HF). However, the mechanism underlying Orai1 upregulation and its role in myocardial infarction remains unclear. Our study investigated the role of Orai1 in activating adenylyl cyclase 8 (AC8) and cyclic AMP (cAMP) response element-binding protein (CREB), as well as its contribution to cardiac dysfunction induced by ischemia and reperfusion (I/R). We found that I/R evoked an increase in the expression of Orai1 and AC8 in rats' hearts, resulting in a substantial rise in diastolic Ca2+ concentration ([Ca2+]i), and reduced ventricular contractions. The expression of Orai1 and AC8 was also increased in ventricular biopsies of post-ischemic HF patients. Mechanistically, we demonstrate that I/R activation of Orai1 stimulated AC8, which produced cAMP and phosphorylated CREB. Subsequently, p-CREB activated the ORAI1 promoter, resulting in Orai1 upregulation and SOCE exacerbation. Intramyocardial administration of AAV9 carrying AC8 short hairpin RNA decreased the expression of AC8, Orai1 and CREB, which restored diastolic [Ca2+]i and improved cardiac contraction. Therefore, our data suggests that the axis composed by Orai1/AC8/CREB plays a critical role in I/R-induced cardiac dysfunction, representing a potential new therapeutic target to limit the progression of the disease toward HF.
Collapse
Affiliation(s)
- Débora Falcón
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain.
| | - Eva M Calderón-Sánchez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Isabel Mayoral-González
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain
| | - Marta Martín-Bórnez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Alejandro Dominguez-Rodriguez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain
| | - Encarnación Gutiérrez-Carretero
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Surgery, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Antonio Ordóñez-Fernández
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain
| | - Juan Antonio Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, 41013 Seville, Spain; Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain.
| |
Collapse
|
4
|
Khurshid S, Lazarte J, Pirruccello JP, Weng LC, Choi SH, Hall AW, Wang X, Friedman SF, Nauffal V, Biddinger KJ, Aragam KG, Batra P, Ho JE, Philippakis AA, Ellinor PT, Lubitz SA. Clinical and genetic associations of deep learning-derived cardiac magnetic resonance-based left ventricular mass. Nat Commun 2023; 14:1558. [PMID: 36944631 PMCID: PMC10030590 DOI: 10.1038/s41467-023-37173-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
Left ventricular mass is a risk marker for cardiovascular events, and may indicate an underlying cardiomyopathy. Cardiac magnetic resonance is the gold-standard for left ventricular mass estimation, but is challenging to obtain at scale. Here, we use deep learning to enable genome-wide association study of cardiac magnetic resonance-derived left ventricular mass indexed to body surface area within 43,230 UK Biobank participants. We identify 12 genome-wide associations (1 known at TTN and 11 novel for left ventricular mass), implicating genes previously associated with cardiac contractility and cardiomyopathy. Cardiac magnetic resonance-derived indexed left ventricular mass is associated with incident dilated and hypertrophic cardiomyopathies, and implantable cardioverter-defibrillator implant. An indexed left ventricular mass polygenic risk score ≥90th percentile is also associated with incident implantable cardioverter-defibrillator implant in separate UK Biobank (hazard ratio 1.22, 95% CI 1.05-1.44) and Mass General Brigham (hazard ratio 1.75, 95% CI 1.12-2.74) samples. Here, we perform a genome-wide association study of cardiac magnetic resonance-derived indexed left ventricular mass to identify 11 novel variants and demonstrate that cardiac magnetic resonance-derived and genetically predicted indexed left ventricular mass are associated with incident cardiomyopathy.
Collapse
Affiliation(s)
- Shaan Khurshid
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Julieta Lazarte
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - James P Pirruccello
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Lu-Chen Weng
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amelia W Hall
- Gene Regulation Observatory, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Wang
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel F Friedman
- Data Sciences Platform, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Victor Nauffal
- Division of Cardiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiran J Biddinger
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer E Ho
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anthony A Philippakis
- Data Sciences Platform, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Sabourin J, Beauvais A, Luo R, Montani D, Benitah JP, Masson B, Antigny F. The SOCE Machinery: An Unbalanced Knowledge between Left and Right Ventricular Pathophysiology. Cells 2022; 11:cells11203282. [PMID: 36291148 PMCID: PMC9600889 DOI: 10.3390/cells11203282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.
Collapse
Affiliation(s)
- Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| | - Antoine Beauvais
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Rui Luo
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jean-Pierre Benitah
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| |
Collapse
|
6
|
Ye J, Li M, Li Q, Jia Z, Hu X, Zhao G, Zhi S, Hong G, Lu Z. Activation of STIM1/Orai1‑mediated SOCE in sepsis‑induced myocardial depression. Mol Med Rep 2022; 26:259. [PMID: 35713214 DOI: 10.3892/mmr.2022.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/21/2022] [Indexed: 11/05/2022] Open
Abstract
Unbalanced Ca2+ homeostasis serves an essential role in the occurrence and development of septic myocardial injury. However, the mechanism of Ca2+ homeostasis in septic myocardial depression is poorly understood due to the complexity of Ca2+ transporters in excitable cells. It was therefore hypothesized that cardiac dysfunction, myocardial injury and cardiac apoptosis in septic myocardial depression are associated with elevated intracellular Ca2+ concentrations caused by stromal interaction molecule 1 (STIM1)/Orai calcium release‑activated calcium modulator 1 (Orai1)‑mediated store‑operated Ca2+ entry (SOCE). A septic myocardial depression model was established using the cecal ligation and puncture operation (CLP) in mice and was simulated in H9C2 cells via lipopolysaccharide (LPS) stimulation. Cardiac function, myocardial injury, cardiac apoptosis and the expression levels of Bax, Bcl‑2, STIM1 and Orai1 were quantified in vivo at 6, 12 and 24 h. Changes in the intracellular Ca2+ concentration, SOCE and the distribution of STIM1 were assessed in vitro within 6 h. The morphological changes of heart tissue were observed by hematoxylin‑eosin staining. Myocardial cellular apoptosis was determined by TUNEL method. The expression of Bax, Bcl‑2, STIM1 and Orai1 were visualized by western blot. Cytosolic calcium concentration and SOCE were evaluated by confocal microscopy. The results demonstrated that cardiac contractile function was significantly reduced at 6 h and morphological changes in cardiac tissues, as well as the myocardial apoptosis rate, were markedly increased at 6, 12 and 24 h following CLP. mRNA and protein expression levels of Bax/Bcl‑2 were significantly enhanced at 6 and 12 h and glycosylation of Orai1 in the myocardium of septic mice was significantly increased at 6 h following CLP. The intracellular Ca2+ concentration, SOCE, was significantly increased at 1‑2 h and the clustering and distribution of STIM1 were markedly changed in H9C2 cells at 1 and 2 h. These findings suggested that myocardial dysfunction, cardiac injury and myocardial depression may be related to increased intracellular Ca2+ concentration resulting from STIM1/Orai1‑mediated SOCE, which may provide a potential method to alleviate septic myocardial depression.
Collapse
Affiliation(s)
- Jingjing Ye
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mengfang Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiao Li
- Ultrasound Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhijun Jia
- Ultrasound Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiyi Hu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shaoce Zhi
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
7
|
Guo S, Yang Y, Qian W, Yao Y, Zhou G, Shen L, Zhou J. MicroRNA-384-5p protects against cardiac hypertrophy via the ALPK3 signaling pathway. J Biochem Mol Toxicol 2022; 36:e23093. [PMID: 35510648 DOI: 10.1002/jbt.23093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
Heart failure is a condition caused by a variety of pathophysiological factors. One important pathological change of chronic heart failure is myocardial hypertrophy. In recent years, several studies have found that dysregulated microRNAs are involved in regulating the pathological process of heart failure. In this study, cardiac hypertrophy models were constructed using isoproterenol (ISO)-/angiotensin-II (Ang-II) to explore the role of miR-384-5p in cardiac hypertrophy and its molecular mechanism in vivo and in vitro. Echocardiography, invasive pressure-volume analysis and hematoxylin-eosin staining were used to explore cardiac structure and function. ALPK3 mRNA and protein expression were detected using quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot analysis and miR-384-5p expression were assessed via RT-qPCR. Our findings determined that miR-384-5p was notably decreased in cardiac hypertrophic tissues and cells, and overexpression of miR-384-5p could ameliorate pressure overload. Furthermore, ALPK3 was determined to downregulate the ALPK3 expression to aggravate cardiomyocyte hypertrophy. Our findings provided a potential therapeutic target for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Suxia Guo
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Yanhua Yang
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Weichun Qian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzhao Yao
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Guoxiang Zhou
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Lihan Shen
- The Department of Cardiology, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Jianping Zhou
- The Department of Thoracic, Dongguan People's Hospital, Dongguan, Guangdong, China
| |
Collapse
|
8
|
Pharmacological blockade of angiotensin II receptor restores diabetes-associated reduction of store operated Ca2+ entry in adult cardiomyocytes. Biochem Biophys Res Commun 2022; 610:56-60. [DOI: 10.1016/j.bbrc.2022.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
|
9
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
10
|
Zheng CB, Gao WC, Xie M, Li Z, Ma X, Song W, Luo D, Huang Y, Yang J, Zhang P, Huang Y, Yang W, Yao X. Ang II Promotes Cardiac Autophagy and Hypertrophy via Orai1/STIM1. Front Pharmacol 2021; 12:622774. [PMID: 34079454 PMCID: PMC8165566 DOI: 10.3389/fphar.2021.622774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/16/2021] [Indexed: 01/07/2023] Open
Abstract
The pathophysiology of cardiac hypertrophy is complex and multifactorial. Both the store-operated Ca2+ entry (SOCE) and excessive autophagy are the major causative factors for pathological cardiac hypertrophy. However, it is unclear whether these two causative factors are interdependent. In this study, we examined the functional role of SOCE and Orai1 in angiotensin II (Ang II)-induced autophagy and hypertrophy using in vitro neonatal rat cardiomyocytes (NRCMs) and in vivo mouse model, respectively. We show that YM-58483 or SKF-96365 mediated pharmacological inhibition of SOCE, or silencing of Orai1 with Orail-siRNA inhibited Ang II-induced cardiomyocyte autophagy both in vitro and in vivo. Also, the knockdown of Orai1 attenuated Ang II-induced pathological cardiac hypertrophy. Together, these data suggest that Ang II promotes excessive cardiomyocyte autophagy through SOCE/Orai1 which can be the prime contributing factors in cardiac hypertrophy.
Collapse
Affiliation(s)
- Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Wen-Cong Gao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Mingxu Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Zhichao Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Xin Ma
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Wencong Song
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dan Luo
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yongxiang Huang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Jichen Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Peng Zhang
- Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T., Shenzhen, China
| | - Yu Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
11
|
Gammons J, Trebak M, Mancarella S. Cardiac-Specific Deletion of Orai3 Leads to Severe Dilated Cardiomyopathy and Heart Failure in Mice. J Am Heart Assoc 2021; 10:e019486. [PMID: 33849280 PMCID: PMC8174158 DOI: 10.1161/jaha.120.019486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Background Orai3 is a mammalian-specific member of the Orai family (Orai1‒3) and a component of the store-operated Ca2+ entry channels. There is little understanding of the role of Orai channels in cardiomyocytes, and its role in cardiac function remains unexplored. Thus, we developed mice lacking Orai1 and Orai3 to address their role in cardiac homeostasis. Methods and Results We generated constitutive and inducible cardiomyocyte-specific Orai3 knockout (Orai3cKO) mice. Constitutive Orai3-loss led to ventricular dysfunction progressing to dilated cardiomyopathy and heart failure. Orai3cKO mice subjected to pressure overload developed a fulminant dilated cardiomyopathy with rapid heart failure onset, characterized by interstitial fibrosis and apoptosis. Ultrastructural analysis of Orai3-deficient cardiomyocytes showed abnormal M- and Z-line morphology. The greater density of condensed mitochondria in Orai3-deficient cardiomyocytes was associated with the upregulation of DRP1 (dynamin-related protein 1). Cardiomyocytes isolated from Orai3cKO mice exhibited profoundly altered myocardial Ca2+ cycling and changes in the expression of critical proteins involved in the Ca2+ clearance mechanisms. Upregulation of TRPC6 (transient receptor potential canonical type 6) channels was associated with upregulation of the RCAN1 (regulator of calcineurin 1), indicating the activation of the calcineurin signaling pathway in Orai3cKO mice. A more dramatic cardiac phenotype emerged when Orai3 was removed in adult mice using a tamoxifen-inducible Orai3cKO mouse. The removal of Orai1 from adult cardiomyocytes did not change the phenotype of tamoxifen-inducible Orai3cKO mice. Conclusions Our results identify a critical role for Orai3 in the heart. We provide evidence that Orai3-mediated Ca2+ signaling is required for maintaining sarcomere integrity and proper mitochondrial function in adult mammalian cardiomyocytes.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Blotting, Western
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- DNA/genetics
- DNA Mutational Analysis
- Disease Models, Animal
- Gene Deletion
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Mice
- Mice, Knockout
- Microscopy, Electron, Transmission
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jesse Gammons
- Department of PhysiologyUniversity of Tennessee Health Science CenterMemphisTN
| | - Mohamed Trebak
- Department of Cellular and Molecular PhysiologyThe Pennsylvania State University College of MedicineHersheyPA
| | | |
Collapse
|
12
|
Rosenberg P, Zhang H, Bryson VG, Wang C. SOCE in the cardiomyocyte: the secret is in the chambers. Pflugers Arch 2021; 473:417-434. [PMID: 33638008 PMCID: PMC7910201 DOI: 10.1007/s00424-021-02540-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway that is present in virtually every cell type. Over the last two decades, many studies have implicated this non-voltage dependent Ca2+ entry pathway in cardiac physiology. The relevance of the SOCE pathway in cardiomyocytes is often questioned given the well-established role for excitation contraction coupling. In this review, we consider the evidence that STIM1 and SOCE contribute to Ca2+ dynamics in cardiomyocytes. We discuss the relevance of this pathway to cardiac growth in response to developmental and pathologic cues. We also address whether STIM1 contributes to Ca2+ store refilling that likely impacts cardiac pacemaking and arrhythmogenesis in cardiomyocytes.
Collapse
Affiliation(s)
- Paul Rosenberg
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27705, USA.
| | - Hengtao Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27705, USA
| | | | - Chaojian Wang
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27705, USA
| |
Collapse
|
13
|
Luo R, Gomez AM, Benitah JP, Sabourin J. Targeting Orai1-Mediated Store-Operated Ca 2+ Entry in Heart Failure. Front Cell Dev Biol 2020; 8:586109. [PMID: 33117812 PMCID: PMC7578222 DOI: 10.3389/fcell.2020.586109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
The archetypal store-operated Ca2+ channels (SOCs), Orai1, which are stimulated by the endo/sarcoplasmic reticulum (ER/SR) Ca2+ sensor stromal interaction molecule 1 (STIM1) upon Ca2+ store depletion is traditionally viewed as instrumental for the function of non-excitable cells. In the recent years, expression and function of Orai1 have gained recognition in excitable cardiomyocytes, albeit controversial. Even if its cardiac physiological role in adult is still elusive and needs to be clarified, Orai1 contribution in cardiac diseases such as cardiac hypertrophy and heart failure (HF) is increasingly recognized. The present review surveys our current arising knowledge on the new role of Orai1 channels in the heart and debates on its participation to cardiac hypertrophy and HF.
Collapse
Affiliation(s)
- Rui Luo
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ana-Maria Gomez
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
14
|
Acconcia F. The Network of Angiotensin Receptors in Breast Cancer. Cells 2020; 9:cells9061336. [PMID: 32471115 PMCID: PMC7349848 DOI: 10.3390/cells9061336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
The renin-angiotensin system (RAS) is a network of proteins regulating many aspects of human physiology, including cardiovascular, pulmonary, and immune system physiology. The RAS is a complicated network of G-protein coupled receptors (GPCRs) (i.e., AT1R, AT2R, MASR, and MRGD) orchestrating the effects of several hormones (i.e., angiotensin II, angiotensin (1-7), and alamandine) produced by protease-based transmembrane receptors (ACE1 and ACE2). Two signaling axes have been identified in the RAS endocrine system that mediate the proliferative actions of angiotensin II (i.e., the AT1R-based pathway) or the anti-proliferative effects of RAS hormones (i.e., the AT2R-, MAS-, and MRGD-based pathways). Disruption of the balance between these two axes can cause different diseases (e.g., cardiovascular pathologies and the severe acute respiratory syndrome coronavirus 2- (SARS-CoV-2)-based COVID-19 disease). It is now accepted that all the components of the RAS endocrine system are expressed in cancer, including cancer of the breast. Breast cancer (BC) is a multifactorial pathology for which there is a continuous need to identify novel drugs. Here, I reviewed the possible roles of both axes of the RAS endocrine network as potential druggable pathways in BC. Remarkably, the analysis of the current knowledge of the different GPCRs of the RAS molecular system not only confirms that AT1R could be considered a drug target and that its inhibition by losartan and candesartan could be useful in the treatment of BC, but also identifies Mas-related GPCR member D (MRGD) as a druggable protein. Overall, the RAS of GPCRs offers multifaceted opportunities for the development of additional compounds for the treatment of BC.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Biomedical Sciences and Technology Section, University Roma TRE, Viale Guglielmo Marconi 446, I-00146 Rome, Italy
| |
Collapse
|