1
|
Lindsay S, Li Y. Coarse-grained modeling of annexin A2-induced microdomain formation on a vesicle. Biophys J 2024; 123:2431-2442. [PMID: 38859585 PMCID: PMC11365106 DOI: 10.1016/j.bpj.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Annexin A2 (A2)-induced microdomain formation is a key step in biological processes such as Ca2+-mediated exocytosis in neuroendocrine cells. In this work, a total of 15 coarse-grained molecular dynamics simulations were performed on vesicle models having a diameter of approximately 250 Å for 15 μs each using the Martini2 force field. Five simulations were performed in the presence of 10 A2, 5 in the presence of A2 but absence of PIP2, and 5 simulations in the absence of A2 but presence of PIP2. Consistent results were generated among the simulations. A2-induced PIP2 microdomain formation was observed and shown to occur in three phases: A2-vesicle association, localized A2-induced PIP2 clustering, and A2 aggregation driving PIP2 microdomain formation. The relationship between A2 aggregation and PIP2 microdomain formation was quantitatively described using a novel method which calculated the variance among protein and lipid positions via the Fréchet mean. A large reduction in PIP2 variance was observed in the presence of A2 but not in its absence. This reduction in PIP2 variance was proportional to the reduction observed in A2 variance and demonstrates that the observed PIP2 microdomain formation is dependent upon A2 aggregation. The three-phase model of A2-induced microdomain formation generated in this work will serve as a valuable guide for further experimental studies and the development of novel A2 inhibitors. No microdomain formation was observed in the absence of A2 and minimal A2-membrane interaction was observed in the absence of PIP2.
Collapse
Affiliation(s)
- S Lindsay
- Department of Chemistry, East Carolina University, Greenville, North Carolina
| | - Y Li
- Department of Chemistry, East Carolina University, Greenville, North Carolina.
| |
Collapse
|
2
|
Herianto S, Subramani B, Chen BR, Chen CS. Recent advances in liposome development for studying protein-lipid interactions. Crit Rev Biotechnol 2024; 44:1-14. [PMID: 36170980 DOI: 10.1080/07388551.2022.2111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Protein-lipid interactions are crucial for various cellular biological processes like intracellular signaling, membrane transport, and cytoskeletal dynamics. Therefore, studying these interactions is essential to understand and unravel their specific functions. Nevertheless, the interacting proteins of many lipids are poorly understood and still require systematic study. Liposomes are the most well-known and familiar biomimetic systems used to study protein-lipid interactions. Although liposomes have been widely used for studying protein-lipid interactions in classical methods such as the co-flotation assay (CFA), co-sedimentation assay (CSA), and flow cytometric assay (FCA), an overview of their current applications and developments in high-throughput methods is not yet available. Here, we summarize the liposome development in low and high-throughput methods to study protein-lipid interactions. Besides, a constructive comment for each platform is presented to stimulate the advancement of these technologies in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Boopathi Subramani
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Ruei Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Lei J, Sun P, Sheng J, Wang H, Xie Y, Song J. The intricate role of annexin A2 in kidney: a comprehensive review. Ren Fail 2023; 45:2273427. [PMID: 37955107 PMCID: PMC10653649 DOI: 10.1080/0886022x.2023.2273427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
4
|
de Souza Ferreira LP, da Silva RA, Gil CD, Geisow MJ. Annexin A1, A2, A5, and A6 involvement in human pathologies. Proteins 2023; 91:1191-1204. [PMID: 37218507 DOI: 10.1002/prot.26512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
The human genome codes for 12 annexins with highly homologous membrane-binding cores and unique amino termini, which endow each protein with its specific biological properties. Not unique to vertebrate biology, multiple annexin orthologs are present in almost all eukaryotes. Their ability to combine either dynamically or constitutively with membrane lipid bilayers is hypothetically the key property that has led to their retention and multiple adaptation in eukaryotic molecular cell biology. Annexin genes are differentially expressed in many cell types but their disparate functions are still being discovered after more than 40 years of international research. A picture is emerging from gene knock down and knock out studies of individual annexins that these are important supporters rather than critical players in organism development and normal cell and tissue function. However, they appear to be highly significant "early responders" toward challenges arising from cell and tissue abiotic or biotic stress. In humans, recent focus has been on involvement of the annexin family for its involvement in diverse pathologies, especially cancer. From what has become an exceedingly broad field of investigation, we have selected four annexins in particular: AnxA1, 2, 5, and 6. Present both within and external to cells, these annexins are currently under intensive investigation in translational research as biomarkers of cellular dysfunction and as potential therapeutic targets for inflammatory conditions, neoplasia, and tissue repair. Annexin expression and release in response to biotic stress appears to be a balancing act. Under- or over-expression in different circumstances appears to damage rather than restore a healthy homeostasis. This review reflects briefly on what is already known of the structures and molecular cell biology of these selected annexins and considers their actual and potential roles in human health and disease.
Collapse
Affiliation(s)
- Luiz Philipe de Souza Ferreira
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Michael J Geisow
- National Institute for Medical Research, Mill Hill, London UK & Delta Biotechnology Ltd, Nottingham, UK
| |
Collapse
|
5
|
Wang C, Paiva TO, Motta C, Speziale P, Pietrocola G, Dufrêne YF. Catch Bond-Mediated Adhesion Drives Staphylococcus aureus Host Cell Invasion. NANO LETTERS 2023. [PMID: 37267288 DOI: 10.1021/acs.nanolett.3c01387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Various viruses and pathogenic bacteria interact with annexin A2 to invade mammalian cells. Here, we show that Staphylococcus aureus engages in extremely strong catch bonds for host cell invasion. By means of single-molecule atomic force microscopy, we find that bacterial surface-located clumping factors bind annexin A2 with extraordinary strength, indicating that these bonds are extremely resilient to mechanical tension. By determining the lifetimes of the complexes under increasing mechanical stress, we demonstrate that the adhesins form catch bonds with their ligand that are capable to sustain forces of 1500-1700 pN. The force-dependent adhesion mechanism identified here provides a molecular framework to explain how S. aureus pathogens tightly attach to host cells during invasion and shows promise for the design of new therapeutics against intracellular S. aureus.
Collapse
Affiliation(s)
- Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Telmo O Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Chiara Motta
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Pseudorabies Virus Regulates the Extracellular Translocation of Annexin A2 To Promote Its Proliferation. J Virol 2023; 97:e0154522. [PMID: 36786600 PMCID: PMC10062141 DOI: 10.1128/jvi.01545-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Pseudorabies virus (PRV) infection causes enormous economic losses to the pork industry and severe health consequences in many hosts. Annexin A2 (ANXA2) is a membrane-associated protein with various intracellular functions associated with many viral infections. However, the role of ANXA2 in alphaherpesvirus replication is still not explored. In the present study, we identified the interaction between ANXA2 and PRV US3. The deficiency of ANXA2 significantly restricted PRV proliferation. PRV infection or US3 overexpression led to ANXA2 extracellular translocation. Furthermore, we confirmed that PRV or US3 could lead to the phosphorylation of the Tyr23 ANXA2 and Tyr419 Src kinase, which was associated with the ANXA2 cell surface transposition. US3 can also bind to Src in an ANXA2-independent manner and enhance the interaction between Src and ANXA2. Additionally, inhibitors targeting ANXA2 (A2ti-1) or Src (PP2) could remarkably inhibit PRV propagation in vitro and protect mice from PRV infection in vivo. Collectively, our findings broaden our understanding of the molecular mechanisms of ANXA2 in alphaherpesvirus pathogenicity and suggest that ANXA2 is a potential therapeutic target for treating alphaherpesvirus-induced infectious diseases. IMPORTANCE PRV belongs to the alphaherpesvirus and has recently re-emerged in China, causing severe economic losses. Recent studies also indicate that PRV may pose a potential public health challenge. ANXA2 is a multifunctional calcium- and lipid-binding protein implicated in immune function, multiple human diseases, and viral infection. Herein, we found that ANXA2 was essential to PRV efficient proliferation. PRV infection resulted in the extracellular translocation of ANXA2 through phosphorylation of ANXA2 and Src. ANXA2 and Src formed a complex with PRV US3. Importantly, inhibitors targeting ANXA2 or Src prevented PRV infection in vitro and in vivo. Therefore, our studies reveal a novel strategy by which alphaherpesvirus modifies ANXA2 to promote its replication and highlight ANXA2 as a target in developing novel promising antivirus agents in viral therapy.
Collapse
|
7
|
Capozzi A, Manganelli V, Riitano G, Caissutti D, Longo A, Garofalo T, Sorice M, Misasi R. Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome: Molecular Mechanisms and Signaling through Lipid Rafts. J Clin Med 2023; 12:jcm12030891. [PMID: 36769539 PMCID: PMC9917860 DOI: 10.3390/jcm12030891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The pathological features of antiphospholipid syndrome (APS) are related to the activity of circulating antiphospholipid antibodies (aPLs) associated with vascular thrombosis and obstetric complications. Indeed, aPLs are not only disease markers, but also play a determining pathogenetic role in APS and exert their effects through the activation of cells and coagulation factors and inflammatory mediators for the materialization of the thromboinflammatory pathogenetic mechanism. Cellular activation in APS necessarily involves the interaction of aPLs with target receptors on the cell membrane, capable of triggering the signal transduction pathway(s). This interaction occurs at specific microdomains of the cell plasma membrane called lipid rafts. In this review, we focus on the key role of lipid rafts as signaling platforms in the pathogenesis of APS, and propose this pathogenetic step as a strategic target of new therapies in order to improve classical anti-thrombotic approaches with "new" immunomodulatory drugs.
Collapse
|
8
|
Bauzá-Martinez J, Armony G, Pronker MF, Wu W. Characterization of protein complexes in extracellular vesicles by intact extracellular vesicle crosslinking mass spectrometry (iEVXL). J Extracell Vesicles 2022; 11:e12245. [PMID: 35918900 PMCID: PMC9346492 DOI: 10.1002/jev2.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022] Open
Abstract
Extracellular vesicles (EVs) are blood‐borne messengers that coordinate signalling between different tissues and organs in the body. The specificity of such crosstalk is determined by preferential EV docking to target sites, as mediated through protein‐protein interactions. As such, the need to structurally characterize the EV surface precedes further understanding of docking selectivity and recipient‐cell uptake mechanisms. Here, we describe an intact extracellular vesicle crosslinking mass spectrometry (iEVXL) method that can be applied for structural characterization of protein complexes in EVs. By using a partially membrane‐permeable disuccinimidyl suberate crosslinker, proteins on the EV outer‐surface and inside EVs can be immobilized together with their interacting partners. This not only provides covalent stabilization of protein complexes before extraction from the membrane‐enclosed environment, but also generates a set of crosslinking distance restraints that can be used for structural modelling and comparative screening of changes in EV protein assemblies. Here we demonstrate iEVXL as a powerful approach to reveal high‐resolution information, about protein determinants that govern EV docking and signalling, and as a crucial aid in modelling docking interactions.
Collapse
Affiliation(s)
- Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gad Armony
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Berg Klenow M, Iversen C, Wendelboe Lund F, Mularski A, Busk Heitmann AS, Dias C, Nylandsted J, Simonsen AC. Annexins A1 and A2 Accumulate and Are Immobilized at Cross-Linked Membrane-Membrane Interfaces. Biochemistry 2021; 60:1248-1259. [PMID: 33861586 DOI: 10.1021/acs.biochem.1c00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rapid membrane repair is required to ensure cell survival after rupture of the plasma membrane. The annexin family of proteins is involved in plasma membrane repair (PMR) and is activated by the influx of Ca2+ from the extracellular medium at the site of injury. Annexins A1 and A2 (ANXA1 and ANXA2, respectively) are structurally similar and bind to negatively charged phosphatidylserine (PS) to induce membrane cross-linking and to promote fusion, which are both essential processes that occur during membrane repair. The degree of annexin accumulation and the annexin mobility at cross-linked membranes are important aspects of ANXA1 and ANXA2 function in repair. Here, we quantify ANXA1- and ANXA2-induced membrane cross-linking between giant unilamellar vesicles (GUVs). Time-lapse measurements show that ANXA1 and ANXA2 can induce membrane cross-linking on a time scale compatible with PMR. Cross-linked membrane-membrane interfaces between the GUVs persist in time without fusion, and quantification of confocal microscopy images demonstrates that ANXA1, ANXA2, and, to a lesser extent, PS lipids accumulate at the double membrane interface. Fluorescence recovery after photobleaching shows that the annexins are fully immobilized at the double membrane interface, whereas PS lipids display a 75% decrease in mobility. In addition, the complete immobilization of annexins between two membranes indicates a high degree of network formation between annexins, suggesting that membrane cross-linking is mainly driven by protein-protein interactions.
Collapse
Affiliation(s)
- Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Christoffer Iversen
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Frederik Wendelboe Lund
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Anne Sofie Busk Heitmann
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Catarina Dias
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Jesper Nylandsted
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
10
|
Special Issue "Recent Developments in Annexin Biology". Cells 2020; 9:cells9112477. [PMID: 33202541 PMCID: PMC7696745 DOI: 10.3390/cells9112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/21/2022] Open
Abstract
Discovered over 40 years ago, the annexin proteins were found to be a structurally conserved subgroup of Ca2+-binding proteins. While the initial research on annexins focused on their signature feature of Ca2+-dependent binding to membranes, over the years the biennial Annexin conference series has highlighted additional diversity in the functions attributed to the annexin family of proteins. The roles of these proteins now extend from basic science to biomedical research, and are being translated into the clinic. The research on annexins involves a global network of researchers, and the 10th biennial Annexin conference brought together over 80 researchers from ten European countries, USA, Brazil, Singapore, Japan and Australia for 3 days in September 2019. In this conference, the discussions focused on two distinct themes—the role of annexins in cellular organization and in health and disease. The articles published in this Special Issue cover these two main themes discussed at this conference, offering a glimpse into some of the notable findings in the field of annexin biology.
Collapse
|