1
|
Lester SC, Moon DH, Patel SH, Awan MJ, Bakst RL. Leave No Cancer Behind: The Conformal Hypofractionation Era and Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2024; 118:165-168. [PMID: 38049222 DOI: 10.1016/j.ijrobp.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 12/06/2023]
Affiliation(s)
- Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Dominic H Moon
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Musaddiq J Awan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard L Bakst
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
2
|
Modic Z, Cemazar M, Markelc B, Cör A, Sersa G, Kranjc Brezar S, Jesenko T. HPV-positive murine oral squamous cell carcinoma: development and characterization of a new mouse tumor model for immunological studies. J Transl Med 2023; 21:376. [PMID: 37296466 PMCID: PMC10257320 DOI: 10.1186/s12967-023-04221-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Infection with high-risk human papillomavirus (HPV) strains is one of the risk factors for the development of oral squamous cell carcinoma (OSCC). Some patients with HPV-positive OSCC have a better prognosis and respond better to various treatment modalities, including radiotherapy or immunotherapy. However, since HPV can only infect human cells, there are only a few immunocompetent mouse models available that enable immunological studies. Therefore, the aim of our study was to develop a transplantable immunocompetent mouse model of HPV-positive OSCC and characterize it in vitro and in vivo. METHODS Two monoclonal HPV-positive OSCC mouse cell lines were established by inducing the expression of HPV-16 oncogenes E6 and E7 in the MOC1 OSCC cell line using retroviral transduction. After confirming stable expression of HPV-16 E6 and E7 with quantitative real-time PCR and immunofluorescence staining, the cell lines were further characterized in vitro using proliferation assay, wound healing assay, clonogenic assay and RNA sequencing. In addition, tumor models were characterized in vivo in C57Bl/6NCrl mice in terms of their histological properties, tumor growth kinetics, and radiosensitivity. Furthermore, immunofluorescence staining of blood vessels, hypoxic areas, proliferating cells and immune cells was performed to characterize the tumor microenvironment of all three tumor models. RESULTS Characterization of the resulting MOC1-HPV cell lines and tumor models confirmed stable expression of HPV-16 oncogenes and differences in cell morphology, in vitro migration capacity, and tumor microenvironment characteristics. Although the cell lines did not differ in their intrinsic radiosensitivity, one of the HPV-positive tumor models, MOC1-HPV K1, showed a significantly longer growth delay after irradiation with a single dose of 15 Gy compared to parental MOC1 tumors. Consistent with this, MOC1-HPV K1 tumors had a lower percentage of hypoxic tumor area and a higher percentage of proliferating cells. Characteristics of the newly developed HPV-positive OSCC tumor models correlate with the transcriptomic profile of MOC1-HPV cell lines. CONCLUSIONS In conclusion, we developed and characterized a novel immunocompetent mouse model of HPV-positive OSCC that exhibits increased radiosensitivity and enables studies of immune-based treatment approaches in HPV-positive OSCC.
Collapse
Affiliation(s)
- Ziva Modic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia.
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Andrej Cör
- Department of Research, Valdoltra Orthopedic Hospital, Jadranska cesta 31, Ankaran, Slovenia
- Faculty of Education, University of Primorska, Cankarjeva pot 5, Koper, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Mireștean CC, Iancu RI, Iancu DPT. Active Immune Phenotype in Head and Neck Cancer: Reevaluating the Iso-Effect Fractionation Based on the Linear Quadratic (LQ) Model-A Narrative Review. Curr Oncol 2023; 30:4805-4816. [PMID: 37232820 DOI: 10.3390/curroncol30050362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Altered fractionation concepts and especially moderate hypo-fractionation are evaluated as alternatives to standard treatment for head and neck squamous cell carcinoma (HNSCC), associated with or not concurrent with or sequential to chemotherapy. The calculation of the iso-equivalent dose regimens has as its starting point the linear quadratic (LQ) formalism traditionally based on the "4Rs" of radiobiology. The higher rates of therapeutic failure after radiotherapy of HNSCC are associated with the heterogeneity of radio-sensibility. The identification of genetic signatures and radio-resistance scores aims to improve the therapeutic ratio of radiotherapy and to conceptualize personalized fractionation schemes. The new data regarding the involvement of the sixth "R" of radiobiology in HNSCC, especially for the HPV-driven subtype, but also for the "immune active" minority of HPV-negative HNSCCs, bring to the fore a multifactorial variation of the α/β ratio. The involvement of the antitumor immune response and the dose/fractionation/volume factors as well as the therapeutic sequence in the case of new multimodal treatments including immune checkpoint inhibitors (ICIs) could be included as an additional term in the quadratic linear formalism especially for hypo-fractionation regimens. This term should take into account the dual immunomodulatory effect (immunosuppressant and stimulator of antitumor immunity) of radiotherapy, which varies from case to case and can bring benefit or a detrimental effect.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Railways Clinical Hospital Iasi, Department of Surgery, 700506 Iași, Romania
| | - Roxana Irina Iancu
- Faculty of Dental Medicine, Oral Pathology Department, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Laboratory, "St. Spiridon" Emergency Universitary Hospital, 700111 Iași, Romania
| | - Dragoș Petru Teodor Iancu
- Faculty of Medicine, Oncology and Radiotherapy Department, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Regional Institute of Oncology, Department of Radiation Oncology, 700483 Iași, Romania
| |
Collapse
|
4
|
Mireștean CC, Iancu RI, Iancu DPT. Simultaneous Integrated Boost (SIB) vs. Sequential Boost in Head and Neck Cancer (HNC) Radiotherapy: A Radiomics-Based Decision Proof of Concept. J Clin Med 2023; 12:jcm12062413. [PMID: 36983413 PMCID: PMC10057404 DOI: 10.3390/jcm12062413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Artificial intelligence (AI) and in particular radiomics has opened new horizons by extracting data from medical imaging that could be used not only to improve diagnostic accuracy, but also to be included in predictive models contributing to treatment stratification of cancer. Head and neck cancers (HNC) are associated with higher recurrence rates, especially in advanced stages of disease. It is considered that approximately 50% of cases will evolve with loco-regional recurrence, even if they will benefit from a current standard treatment consisting of definitive chemo-radiotherapy. Radiotherapy, the cornerstone treatment in locally advanced HNC, could be delivered either by the simultaneous integrated boost (SIB) technique or by the sequential boost technique, the decision often being a subjective one. The principles of radiobiology could be the basis of an optimal decision between the two methods of radiation dose delivery, but the heterogeneity of HNC radio-sensitivity makes this approach difficult. Radiomics has demonstrated the ability to non-invasively predict radio-sensitivity and the risk of relapse in HNC. Tumor heterogeneity evaluated with radiomics, the inclusion of coarseness, entropy and other first order features extracted from gross tumor volume (GTV) in multivariate models could identify pre-treatment cases that will benefit from one of the approaches (SIB or sequential boost radio-chemotherapy) considered the current standard of care for locally advanced HNC. Computer tomography (CT) simulation and daily cone beam CT (CBCT) could be chosen as imaging source for radiomic analysis.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Department of Surgery, Railways Clinical Hospital Iasi, 700506 Iași, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, Faculty of Dental Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Laboratory, "St. Spiridon" Emergency Universitary Hospital, 700111 Iași, Romania
| | - Dragoș Petru Teodor Iancu
- Oncology and Radiotherapy Department, Faculty of Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iași, Romania
| |
Collapse
|
5
|
Valentini C, Ebert N, Koi L, Pfeifer M, Löck S, Erdmann C, Krause M, Baumann M. Preclinical trial comparing radiotherapy alone versus standard radiochemotherapy in three human papilloma virus (HPV) negative and three HPV-positive head and neck squamous cell carcinoma (HNSCC) xenograft tumour models. Radiother Oncol 2023; 183:109546. [PMID: 36813172 DOI: 10.1016/j.radonc.2023.109546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
PURPOSE To perform a preclinical trial comparing the efficacy of fractionated radiotherapy versus radiochemotherapy with cisplatin in HPV-positive and negative human head and neck squamous cell carcinoma (HNSCC) xenografts. MATERIAL AND METHODS Three HPV-negative and three HPV-positive HNSCC xenografts in nude mice were randomized to radiotherapy (RT) alone or to radiochemotherapy (RCT) with weekly cisplatin. To evaluate tumour growth time, 20 Gy radiotherapy (±cisplatin) were administered in 10 fractions over 2 weeks. Dose-response curves for local tumour control were generated for RT with 30 fractions over 6 weeks to different dose levels given alone or combined with cisplatin (RCT). RESULTS One of three investigated HPV-negative and two out of three HPV-positive tumour models showed a significant increase in local tumour control after RCT compared to RT alone. Pooled analysis of the HPV-positive tumour models showed a statistically significant and substantial benefit of RCT versus RT alone, with an enhancement ratio of 1.34. Although heterogeneity in response to both RT and RCT was also observed between the different HPV-positive HNSCC, these overall were more RT and RCT sensitive than HPV-negative models. CONCLUSION The impact of adding chemotherapy to fractionated radiotherapy on local control was heterogenous, both in HPV-negative and in HPV-positive tumours, calling for predictive biomarkers. RCT substantially increased local tumour control in the pooled group of all HPV-positive tumours whereas this was not found in HPV-negative tumours. Omission of chemotherapy in HPV-positive HNSCC as part of a treatment de-escalation strategy is not supported by this preclinical trial.
Collapse
Affiliation(s)
- Chiara Valentini
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.
| | - Nadja Ebert
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Lydia Koi
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Manuel Pfeifer
- Institute of Legal Medicine, Medizinische Fakultät, Technische Universität Dresden, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Christoph Erdmann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Mechthild Krause
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, and Helmholtz Association/Helmholtz-jZentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael Baumann
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, and Helmholtz Association/Helmholtz-jZentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
6
|
Siqueira JM, Heguedusch D, Rodini CO, Nunes FD, Rodrigues MFSD. Mechanisms involved in cancer stem cell resistance in head and neck squamous cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:116-137. [PMID: 37065869 PMCID: PMC10099599 DOI: 10.20517/cdr.2022.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 04/18/2023]
Abstract
Despite scientific advances in the Oncology field, cancer remains a leading cause of death worldwide. Molecular and cellular heterogeneity of head and neck squamous cell carcinoma (HNSCC) is a significant contributor to the unpredictability of the clinical response and failure in cancer treatment. Cancer stem cells (CSCs) are recognized as a subpopulation of tumor cells that can drive and maintain tumorigenesis and metastasis, leading to poor prognosis in different types of cancer. CSCs exhibit a high level of plasticity, quickly adapting to the tumor microenvironment changes, and are intrinsically resistant to current chemo and radiotherapies. The mechanisms of CSC-mediated therapy resistance are not fully understood. However, they include different strategies used by CSCs to overcome challenges imposed by treatment, such as activation of DNA repair system, anti-apoptotic mechanisms, acquisition of quiescent state and Epithelial-mesenchymal transition, increased drug efflux capacity, hypoxic environment, protection by the CSC niche, overexpression of stemness related genes, and immune surveillance. Complete elimination of CSCs seems to be the main target for achieving tumor control and improving overall survival for cancer patients. This review will focus on the multi-factorial mechanisms by which CSCs are resistant to radiotherapy and chemotherapy in HNSCC, supporting the use of possible strategies to overcome therapy failure.
Collapse
Affiliation(s)
- Juliana Mota Siqueira
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daniele Heguedusch
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo 17012-230, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Maria Fernanda Setúbal Destro Rodrigues
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo 01504-001, Brazil
- Correspondence to: PhD. Maria Fernanda Setúbal Destro Rodrigues. Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Rua Vergueiro, 235/249 - Liberdade, São Paulo 01504-001, Brazil. E-mail:
| |
Collapse
|
7
|
Reid P, Staudacher AH, Marcu LG, Olver I, Moghaddasi L, Brown MP, Bezak E. Characteristic differences in radiation-induced DNA damage response in human papillomavirus-negative and human papillomavirus-positive head and neck cancers with accumulation of fractional radiation dose. Head Neck 2021; 43:3086-3096. [PMID: 34235809 DOI: 10.1002/hed.26802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Superior treatment responses by patients with human papillomavirus (HPV) positive head and neck squamous cell carcinoma (HNSCC), compared to patients with HNSCC from other causes, drive biomarker research to optimize treatment. Most HNSCC patients receive radiation therapy delivered as a fractionated course. Changing HPV status in HNSCC from a positive prognostic marker to a predictive one requires biomarkers that capture cellular radiation response to cumulative dose. METHODS Nuclear enlargement, γH2AX expression and micronuclei count, were studied in six HNSCC cell lines after 4 Gy fractionated X-irradiation. RESULTS All HNSCC cell lines displayed altered cellular responses, indicating increasing inability to repair radiation damage with subsequent radiation fractions. Increases in nuclear area were significantly greater among HPV positive cell lines (207% and 67% for the HPV positive and HPV negative groups, respectively). CONCLUSIONS A different character of DNA repair dysfunction in the HPV positive group suggests greater chromosomal translocation with accumulated radiation dose.
Collapse
Affiliation(s)
- Paul Reid
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Loredana G Marcu
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia.,Faculty of Science, University of Oradea, Oradea, Romania
| | - Ian Olver
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| | - Leyla Moghaddasi
- Genesis Care, Adelaide Radiotherapy Centre, Adelaide, South Australia, Australia.,Department of Physics, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia.,Department of Physics, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|