1
|
Gao D. The role of non-malignant B cells in malignant hematologic diseases. Hematology 2025; 30:2466261. [PMID: 39964954 DOI: 10.1080/16078454.2025.2466261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
The tumor microenvironment (TME) represents a heterogeneous, complicated ecosystem characterized by intricate interactions between tumor cells and immune cells. During the past decade, immune cells especially T cells were found to play an important role in the progression of tumor and many related immune checkpoints drugs were created. In recent years, more and more scientists revealed the critical role of B-cells within the TME, particularly various populations of non-malignant B cells. Some studies indicated that non-malignant B cells may exert a 'double-edged sword' role in solid tumors. However, there has been comparatively less focus on the role of non-malignant B cells in hematologic malignancies. In this review, we characterized the development of B cells and summarized its functions of antitumor immunity within TME, with an emphasis on elucidating the roles and potential mechanisms of non-malignant B cells in the progression of hematologic diseases including classical Hodgkin's lymphoma, non-Hodgkin's B-cell lymphoma, non-Hodgkin's T-cell lymphoma, leukemia and multiple myeloma.
Collapse
Affiliation(s)
- Daquan Gao
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Ahmed S, Aschner M, Alsharif KF, Allahyani M, Huang G, Wan C, Khan H. Marine peptides in lymphoma: surgery at molecular level for therapeutic understanding. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03901-w. [PMID: 39992419 DOI: 10.1007/s00210-025-03901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Lymphoma, the most common form of blood cancer, affects primarily the intricate network of tissues and organs known as the lymphatic system. Globally, it ranks among the leading causes of cancer-related deaths. Although conventional therapies have led to significant advancements, they are accompanied by adverse side effects and present challenges in cases of multidrug resistance, refractory patients, and relapses. This highlights a pressing need for innovative treatment approaches. Extensive research on the anti-lymphoma properties of natural compounds has particularly focused on marine organisms as valuable sources for potential medicinal agents. Among these, anticancer peptides have garnered attention due to their multiple beneficial effects against cancer, coupled with reduced toxicity to normal cells. This review focuses on the molecular mechanisms underlying the anti-lymphoma effects of marine peptides, examining the diverse pathways through which these peptides impact physiological processes. Key effects include modulation of cell viability, induction of apoptosis, cell cycle arrest, antimitotic activity, immunotherapeutic properties, disruption of mitochondrial function and induction of oxidative stress, cancer cell membrane destruction, and interference with microtubule stability. The review also highlights the antibody-drug conjugates (ADCs) derived from marine peptides and their synergistic effects with other anti-lymphoma medications. This knowledge should inspire future study and development of these prospective therapeutic modalities and hasten the investigation and creation of novel lymphoma remedies derived from marine sources.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chunpeng Wan
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
3
|
Lee JH. ATM in immunobiology: From lymphocyte development to cancer immunotherapy. Transl Oncol 2025; 52:102268. [PMID: 39752906 PMCID: PMC11754496 DOI: 10.1016/j.tranon.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy. The review describes ATM's critical functions in V(D)J recombination and class switch recombination, highlighting its importance in adaptive immunity. It examines ATM's role in innate immunity, particularly in NF-κB signaling and cytokine production. Furthermore, the review analyzes the impact of ATM deficiency on oxidative stress and mitochondrial function in immune cells, providing insights into the immunological defects observed in Ataxia Telangiectasia (A-T). The article explores ATM's significance in maintaining hematopoietic stem cell function and its implications for bone marrow transplantation and gene therapy. Additionally, it addresses ATM's involvement in inflammation and immune senescence, linking DNA damage response to age-related immune decline. Finally, this review highlights the emerging role of ATM in cancer immunotherapy, where its inhibition shows promise in enhancing immune checkpoint blockade therapy. This review synthesizes current knowledge on ATM's functions in the immune system, offering insights into the pathophysiology of ATM-related disorders and potential therapeutic strategies for immune-related conditions and cancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
4
|
Zhang Y, Li X, Ren X, Wang D, Zhao Y, Wang Y, Jin S, Lin Q, Zou K, Wang T. Nanozymes as Glucose Scavengers and Oxygenerators for Enhancing Tumor Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61805-61819. [PMID: 39480068 DOI: 10.1021/acsami.4c18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Insufficient accumulation of reactive oxygen species (ROS) due to tumor hypoxia significantly contributes to increased radiation resistance and the failure of radiotherapy (RT). Therefore, developing methods to alleviate hypoxia and boost ROS levels represents a promising strategy for enhanced radiosensitivity. This study introduced a self-cascade catalytic Pt@Au nanozymes as a radiosensitizer, using glucose oxidase (GOx)-, catalase (CAT)-, and peroxidase (POD)-like activities to improve hypoxia and increase ROS accumulation, thereby affecting glucose metabolism and enhancing the effects of RT. Pt@Au nanozymes exhibit GOx-like activity, which not only depletes glucose to induce starvation therapy, but also generates hydrogen peroxide (H2O2) for cascade reactions. Moreover, Pt@Au nanozymes demonstrate CAT-like activity, catalyzing the conversion of H2O2 to O2. This conversion effectively alleviates hypoxia, stabilizes ROS, increases DNA damage, significantly enhancing RT efficacy and sustaining the effects of starvation therapy. As high-Z materials, Pt@Au nanozymes can deposit more X-ray energy. Furthermore, the POD-like activity catalyzes the conversion of H2O2 into highly reactive hydroxyl radicals (·OH), which increases ROS levels and enhances RT. Pt@Au nanozymes serve as X-ray computed tomography (CT) imaging agents, allowing for clear differentiation between tumor and normal tissue boundaries and enhancing the precision of RT. In summary, Pt@Au nanozymes serve as effective radiosensitizers by depleting glucose to induce starvation therapy, enhancing cascade reactions, and inhibiting tumor proliferation. Through their self-cascade reactions, these nanozymes dramatically increase oxygen levels within tumors, reduce hypoxia, and enhance ROS levels. This advancement addresses the radioresistance associated with hypoxic tumors, paving the way for innovative strategies in RT.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun 130041, P. R. China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dongzhou Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuechen Zhao
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuan Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, P. R. China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kun Zou
- The First Affiliated Hospital of Dalian Medical University, Radiotherapy Oncology Department, Dalian 116011, P. R. China
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
5
|
Wang SW, Zheng QY, Hong WF, Tang BF, Hsu SJ, Zhang Y, Zheng XB, Zeng ZC, Gao C, Ke AW, Du SS. Mechanism of immune activation mediated by genomic instability and its implication in radiotherapy combined with immune checkpoint inhibitors. Radiother Oncol 2024; 199:110424. [PMID: 38997092 DOI: 10.1016/j.radonc.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Various genetic and epigenetic changes associated with genomic instability (GI), including DNA damage repair defects, chromosomal instability, and mitochondrial GI, contribute to development and progression of cancer. These alterations not only result in DNA leakage into the cytoplasm, either directly or through micronuclei, but also trigger downstream inflammatory signals, such as the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Apart from directly inducing DNA damage to eliminate cancer cells, radiotherapy (RT) exerts its antitumor effects through intracellular DNA damage sensing mechanisms, leading to the activation of downstream inflammatory signaling pathways. This not only enables local tumor control but also reshapes the immune microenvironment, triggering systemic immune responses. The combination of RT and immunotherapy has emerged as a promising approach to increase the probability of abscopal effects, where distant tumors respond to treatment due to the systemic immunomodulatory effects. This review emphasizes the importance of GI in cancer biology and elucidates the mechanisms by which RT induces GI remodeling of the immune microenvironment. By elucidating the mechanisms of GI and RT-induced immune responses, we aim to emphasize the crucial importance of this approach in modern oncology. Understanding the impact of GI on tumor biological behavior and therapeutic response, as well as the possibility of activating systemic anti-tumor immunity through RT, will pave the way for the development of new treatment strategies and improve prognosis for patients.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China
| | - Qiu-Yi Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei-Feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Bu-Fu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shu-Jung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiao-Bin Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chao Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
6
|
Issa II, Due H, Brøndum RF, Veeravakaran V, Haraldsdóttir H, Sylvester C, Brogaard A, Dhanjal S, Schmierer B, Dybkær K. CRISPR-Cas9 Knockout Screens Identify DNA Damage Response Pathways and BTK as Essential for Cisplatin Response in Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2024; 16:2437. [PMID: 39001501 PMCID: PMC11240649 DOI: 10.3390/cancers16132437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The recurrence of diffuse large B-cell lymphoma (DLBCL) has been observed in 40% of cases. The standard of care for refractory/relapsed DLBCL (RR-DLBCL) is platinum-based treatment prior to autologous stem cell transplantation; however, the prognosis for RR-DLBCL patients remains poor. Thus, to identify genes affecting the cisplatin response in DLBCL, cisplatin-based whole-genome CRISPR-Cas9 knockout screens were performed in this study. We discovered DNA damage response (DDR) pathways as enriched among identified sensitizing CRISPR-mediated gene knockouts. In line, the knockout of the nucleotide excision repair genes XPA and ERCC6 sensitized DLBCL cells to platinum drugs irrespective of proliferation rate, thus documenting DDR as essential for cisplatin sensitivity in DLBCL. Functional analysis revealed that the loss of XPA and ERCC6 increased DNA damage levels and altered cell cycle distribution. Interestingly, we also identified BTK, which is involved in B-cell receptor signaling, to affect cisplatin response. The knockout of BTK increased cisplatin sensitivity in DLBCL cells, and combinatory drug screens revealed a synergistic effect of the BTK inhibitor, ibrutinib, with platinum drugs at low concentrations. Applying local and external DLBCL cohorts, we addressed the clinical relevance of the genes identified in the CRISPR screens. BTK was among the most frequently mutated genes with a frequency of 3-5%, and XPA and ERCC6 were also mutated, albeit at lower frequencies. Furthermore, 27-54% of diagnostic DLBCL samples had mutations in pathways that can sensitize cells to cisplatin. In conclusion, this study shows that XPA and ERCC6, in addition to BTK, are essential for the response to platinum-based drugs in DLBCL.
Collapse
Affiliation(s)
- Issa Ismail Issa
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hanne Due
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Rasmus Froberg Brøndum
- Center for Clinical Data Science (CLINDA), Department of Clinical Medicine, Aalborg University, and Research, Education and Innovation, Aalborg University Hospital, 9260 Gistrup, Denmark
| | - Vidthdyan Veeravakaran
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Hulda Haraldsdóttir
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Cathrine Sylvester
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Asta Brogaard
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Soniya Dhanjal
- CRISPR Functional Genomics, SciLifeLab and Karolinska Institutet, Department of Medical Biochemistry and Biophysics, 17165 Solna, Sweden
| | - Bernhard Schmierer
- CRISPR Functional Genomics, SciLifeLab and Karolinska Institutet, Department of Medical Biochemistry and Biophysics, 17165 Solna, Sweden
| | - Karen Dybkær
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
7
|
Tong J, Song J, Zhang W, Zhai J, Guan Q, Wang H, Liu G, Zheng C. When DNA-damage responses meet innate and adaptive immunity. Cell Mol Life Sci 2024; 81:185. [PMID: 38630271 PMCID: PMC11023972 DOI: 10.1007/s00018-024-05214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Science, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Qingli Guan
- The Affiliated Hospital of Chinese PLA 80th Group Army, Weifang, 261000, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gentao Liu
- Department of Oncology, Tenth People's Hospital Affiliated to Tongji University & Cancer Center, Tongji University School of Medicine, Shanghai, 20000, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
8
|
Mao X, Lee NK, Saad SE, Fong IL. Clinical translation for targeting DNA damage repair in non-small cell lung cancer: a review. Transl Lung Cancer Res 2024; 13:375-397. [PMID: 38496700 PMCID: PMC10938103 DOI: 10.21037/tlcr-23-742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
Despite significant advancements in screening, diagnosis, and treatment of non-small cell lung cancer (NSCLC), it remains the primary cause of cancer-related deaths globally. DNA damage is caused by the exposure to exogenous and endogenous factors and the correct functioning of DNA damage repair (DDR) is essential to maintain of normal cell circulation. The presence of genomic instability, which results from defective DDR, is a critical characteristic of cancer. The changes promote the accumulation of mutations, which are implicated in cancer cells, but these may be exploited for anti-cancer therapies. NSCLC has a distinct genomic profile compared to other tumors, making precision medicine essential for targeting actionable gene mutations. Although various treatment options for NSCLC exist including chemotherapy, targeted therapy, and immunotherapy, drug resistance inevitably arises. The identification of deleterious DDR mutations in 49.6% of NSCLC patients has led to the development of novel target therapies that have the potential to improve patient outcomes. Synthetic lethal treatment using poly (ADP-ribose) polymerase (PARP) inhibitors is a breakthrough in biomarker-driven therapy. Additionally, promising new compounds targeting DDR, such as ATR, CHK1, CHK2, DNA-PK, and WEE1, had demonstrated great potential for tumor selectivity. In this review, we provide an overview of DDR pathways and discuss the clinical translation of DDR inhibitors in NSCLC, including their application as single agents or in combination with chemotherapy, radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Xinru Mao
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Nung Kion Lee
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| |
Collapse
|
9
|
Wu Q, Fang C, Wang X, Huang S, Weng G. CHEK2 is a potential prognostic biomarker associated with immune infiltration in clear cell renal cell carcinoma. Sci Rep 2023; 13:21928. [PMID: 38081888 PMCID: PMC10713979 DOI: 10.1038/s41598-023-49316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Checkpoint kinase 2 (CHEK2) plays a crucial role in responding to DNA damage and is linked to diverse cancer types. However, its significance in the prediction of prognosis and impacts on the immune status of clear cell renal cell carcinoma (ccRCC) remains unclear. This study aimed to identify the role of CHEK2 in prognosis and immune microenvironment of ccRCC. We analyzed transcriptome and clinicopathological data from the cancer genome atlas (TCGA) database and conducted functional enrichment analysis to explore molecular mechanisms. The relationship between CHEK2 and immune infiltration was evaluated, and drug sensitivity analysis was performed using the CellMiner database. The results showed that CHEK2 was an independent predictor of ccRCC prognosis and was closely associated with immune-related processes. Additionally, high expression of CHEK2 was linked to resistance to certain targeted drugs. These findings suggest that CHEK2 could serve as a biomarker for ccRCC, providing insights into tumor immune microenvironment alterations and immunotherapeutic response. Further investigation is needed to fully understand the potential of CHEK2 as a prognostic predictor and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Qihang Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Fang
- Department of Urology, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Xue Wang
- Urology and Nephrology Institute of Ningbo University, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Shuaishuai Huang
- Urology and Nephrology Institute of Ningbo University, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Guobin Weng
- Department of Urology, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
10
|
Ren T, Wang S, Zhang B, Zhou W, Wang C, Zhao X, Feng J. LTA4H extensively associates with mRNAs and lncRNAs indicative of its novel regulatory targets. PeerJ 2023; 11:e14875. [PMID: 36923505 PMCID: PMC10010175 DOI: 10.7717/peerj.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/19/2023] [Indexed: 03/12/2023] Open
Abstract
The RNA-binding metabolic enzyme LTA4H is a novel target for cancer chemoprevention and chemotherapy. Recent research shows that the increased expression of LTA4H in laryngeal squamous cell carcinoma (LSCC) promotes tumor proliferation, migration, and metastasis. However, its mechanism remains unclear. To investigate the potential role of LTA4H in LSCC, we employed the improved RNA immunoprecipitation and sequencing (iRIP-Seq) experiment to get the expression profile of LTA4H binding RNA in HeLa model cells, a cancer model cell that is frequently used in molecular mechanism research. We found that LTA4H extensively binds with mRNAs/pre-mRNAs and lncRNAs. In the LTA4H binding peak, the frequency of the AAGG motif reported to interact with TRA2β4 was high in both replicates. More notably, LTA4H-binding genes were significantly enriched in the mitotic cell cycle, DNA repair, RNA splicing-related pathways, and RNA metabolism pathways, which means that LTA4H has tumor-related alternative splicing regulatory functions. QRT-PCR validation confirmed that LTA4H specifically binds to mRNAs of carcinogenesis-associated genes, including LTBP3, ROR2, EGFR, HSP90B1, and lncRNAs represented by NEAT1. These results suggest that LTA4H may combine with genes associated with LSCC as an RNA-binding protein to perform a cancer regulatory function. Our study further sheds light on the molecular mechanism of LTA4H as a clinical therapy target for LSCC.
Collapse
Affiliation(s)
- Tianjiao Ren
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Song Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cansi Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaorui Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Juan Feng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
11
|
Mkrtchyan GV, Veviorskiy A, Izumchenko E, Shneyderman A, Pun FW, Ozerov IV, Aliper A, Zhavoronkov A, Scheibye-Knudsen M. High-confidence cancer patient stratification through multiomics investigation of DNA repair disorders. Cell Death Dis 2022; 13:999. [PMID: 36435816 PMCID: PMC9701218 DOI: 10.1038/s41419-022-05437-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
Multiple cancer types have limited targeted therapeutic options, in part due to incomplete understanding of the molecular processes underlying tumorigenesis and significant intra- and inter-tumor heterogeneity. Identification of novel molecular biomarkers stratifying cancer patients with different survival outcomes may provide new opportunities for target discovery and subsequent development of tailored therapies. Here, we applied the artificial intelligence-driven PandaOmics platform ( https://pandaomics.com/ ) to explore gene expression changes in rare DNA repair-deficient disorders and identify novel cancer targets. Our analysis revealed that CEP135, a scaffolding protein associated with early centriole biogenesis, is commonly downregulated in DNA repair diseases with high cancer predisposition. Further screening of survival data in 33 cancers available at TCGA database identified sarcoma as a cancer type where lower survival was significantly associated with high CEP135 expression. Stratification of cancer patients based on CEP135 expression enabled us to examine therapeutic targets that could be used for the improvement of existing therapies against sarcoma. The latter was based on application of the PandaOmics target-ID algorithm coupled with in vitro studies that revealed polo-like kinase 1 (PLK1) as a potential therapeutic candidate in sarcoma patients with high CEP135 levels and poor survival. While further target validation is required, this study demonstrated the potential of in silico-based studies for a rapid biomarker discovery and target characterization.
Collapse
Affiliation(s)
- Garik V Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Shi C, Qin K, Lin A, Jiang A, Cheng Q, Liu Z, Zhang J, Luo P. The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy. J Exp Clin Cancer Res 2022; 41:268. [PMID: 36071479 PMCID: PMC9450390 DOI: 10.1186/s13046-022-02469-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
As our understanding of the mechanisms of cancer treatment has increased, a growing number of studies demonstrate pathways through which DNA damage repair (DDR) affects the immune system. At the same time, the varied response of patients to immune checkpoint blockade (ICB) therapy has prompted the discovery of various predictive biomarkers and the study of combination therapy. Here, our investigation explores the interactions involved in combination therapy, accompanied by a review that summarizes currently identified and promising predictors of response to immune checkpoint inhibitors (ICIs) that are useful for classifying oncology patients. In addition, this work, which discusses immunogenicity and several components of the tumor immune microenvironment, serves to illustrate the mechanism by which higher response rates and improved efficacy of DDR inhibitors (DDRi) in combination with ICIs are achieved.
Collapse
|
13
|
Mahajan S, Aalhate M, Guru SK, Singh PK. Nanomedicine as a magic bullet for combating lymphoma. J Control Release 2022; 347:211-236. [PMID: 35533946 DOI: 10.1016/j.jconrel.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Hematological malignancy like lymphoma originates in lymph tissues and has a propensity to spread across other organs. Managing such tumors is challenging as conventional strategies like surgery and local treatment are not plausible options and there are high chances of relapse. The advent of novel targeted therapies and antibody-mediated treatments has proven revolutionary in the management of these tumors. Although these therapies have an added advantage of specificity in comparison to the traditional chemotherapy approach, such treatment alternatives suffer from the occurrence of drug resistance and dose-related toxicities. In past decades, nanomedicine has emerged as an excellent surrogate to increase the bioavailability of therapeutic moieties along with a reduction in toxicities of highly cytotoxic drugs. Nanotherapeutics achieve targeted delivery of the therapeutic agents into the malignant cells and also have the ability to carry genes and therapeutic proteins to the desired sites. Furthermore, nanomedicine has an edge in rendering personalized medicine as one type of lymphoma is pathologically different from others. In this review, we have highlighted various applications of nanotechnology-based delivery systems based on lipidic, polymeric and inorganic nanomaterials that address different targets for effectively tackling lymphomas. Moreover, we have discussed recent advances and therapies available exclusively for managing this malignancy.
Collapse
Affiliation(s)
- Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
14
|
Zhao S, Xu B, Ma W, Chen H, Jiang C, Cai J, Meng X. DNA Damage Repair in Brain Tumor Immunotherapy. Front Immunol 2022; 12:829268. [PMID: 35095931 PMCID: PMC8792754 DOI: 10.3389/fimmu.2021.829268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
With the gradual understanding of tumor development, many tumor therapies have been invented and applied in clinical work, and immunotherapy has been widely concerned as an emerging hot topic in the last decade. It is worth noting that immunotherapy is nowadays applied under too harsh conditions, and many tumors are defined as “cold tumors” that are not sensitive to immunotherapy, and brain tumors are typical of them. However, there is much evidence that suggests a link between DNA damage repair mechanisms and immunotherapy. This may be a breakthrough for the application of immunotherapy in brain tumors. Therefore, in this review, first, we will describe the common pathways of DNA damage repair. Second, we will focus on immunotherapy and analyze the mechanisms of DNA damage repair involved in the immune process. Third, we will review biomarkers that have been or may be used to evaluate immunotherapy for brain tumors, such as TAMs, RPA, and other molecules that may provide a precursor assessment for the rational implementation of immunotherapy for brain tumors. Finally, we will discuss the rational combination of immunotherapy with other therapeutic approaches that have an impact on the DNA damage repair process in order to open new pathways for the application of immunotherapy in brain tumors, to maximize the effect of immunotherapy on DNA damage repair mechanisms, and to provide ideas and guidance for immunotherapy in brain tumors.
Collapse
Affiliation(s)
- Shihong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boya Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
16
|
Lorenzo-Anota HY, Zarate-Triviño DG, Uribe-Echeverría JA, Ávila-Ávila A, Rangel-López JR, Martínez-Torres AC, Rodríguez-Padilla C. Chitosan-Coated Gold Nanoparticles Induce Low Cytotoxicity and Low ROS Production in Primary Leucocytes, Independent of Their Proliferative Status. Pharmaceutics 2021; 13:942. [PMID: 34202522 PMCID: PMC8309170 DOI: 10.3390/pharmaceutics13070942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Chitosan-coated gold nanoparticles (CH-AuNPs) have important theranostic applications in biomedical sciences, including cancer research. However, although cell cytotoxicity has been studied in cancerous cells, little is known about their effect in proliferating primary leukocytes. Here, we assessed the effect of CH-AuNPs and the implication of ROS on non-cancerous endothelial and fibroblast cell lines and in proliferative lymphoid cells. (2) Methods: The Turkevich method was used to synthetize gold nanoparticles. We tested cell viability, cell death, ROS production, and cell cycle in primary lymphoid cells, compared with non-cancer and cancer cell lines. Concanavalin A (ConA) or lipopolysaccharide (LPS) were used to induce proliferation on lymphoid cells. (3) Results: CH-AuNPs presented high cytotoxicity and ROS production against cancer cells compared to non-cancer cells; they also induced a different pattern of ROS production in peripheral blood mononuclear cells (PBMCs). No significant cell-death difference was found in PBMCs, splenic mononuclear cells, and bone marrow cells (BMC) with or without a proliferative stimuli. (4) Conclusions: Taken together, our results highlight the selectivity of CH-AuNPs to cancer cells, discarding a consistent cytotoxicity upon proliferative cells including endothelial, fibroblast, and lymphoid cells, and suggest their application in cancer treatment without affecting immune cells.
Collapse
Affiliation(s)
- Helen Yarimet Lorenzo-Anota
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Diana G. Zarate-Triviño
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Jorge Alberto Uribe-Echeverría
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Andrea Ávila-Ávila
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - José Raúl Rangel-López
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Ana Carolina Martínez-Torres
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
| | - Cristina Rodríguez-Padilla
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Monterrey, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; (H.Y.L.-A.); (D.G.Z.-T.); (J.A.U.-E.); (A.Á.-Á.); (J.R.R.-L.); (C.R.-P.)
- LONGEVEDEN SA de CV, Monterrey, Nuevo León 64710, Mexico
| |
Collapse
|