1
|
Vu S, Siaj M, Izquierdo R. Graphene-Based Fiber Materials for Gas Sensing Applications: State of the Art Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5825. [PMID: 39685260 DOI: 10.3390/ma17235825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024]
Abstract
The importance of gas sensors is apparent as the detection of gases and pollutants is crucial for environmental monitoring and human safety. Gas sensing devices also hold the potential for medical applications as health monitoring and disease diagnostic tools. Gas sensors fabricated from graphene-based fibers present a promising advancement in the field of sensing technology due to their enhanced sensitivity and selectivity. The diverse chemical and mechanical properties of graphene-based fibers-such as high surface area, flexibility, and structural stability-establish them as ideal gas-sensing materials. Most significantly, graphene fibers can be readily tuned to detect a wide range of gases, making them highly versatile in gas-sensing technologies. This review focuses on graphene-based composite fibers for gas sensors, with an emphasis on the preparation processes used to achieve these fibers and the gas sensing mechanisms involved in their sensors. Graphene fiber gas sensors are presented based on the chemical composition of their target gases, with detailed discussions on their sensitivity and performance. This review reveals that graphene-based fibers can be prepared through various methods and can be effectively integrated into gas-sensing devices for a diverse range of applications. By presenting an overview of developments in this field over the past decade, this review highlights the potential of graphene-based fiber sensors and their prospective integration into future technologies.
Collapse
Affiliation(s)
- Susanna Vu
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada
- Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Mohamed Siaj
- Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Ricardo Izquierdo
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada
| |
Collapse
|
2
|
Fissore VI, Arcamone G, Astolfi A, Barbaro A, Carullo A, Chiavassa P, Clerico M, Fantucci S, Fiori F, Gallione D, Giusto E, Lorenzati A, Mastromatteo N, Montrucchio B, Pellegrino A, Piccablotto G, Puglisi GE, Ramirez-Espinosa G, Raviola E, Servetti A, Shtrepi L. Multi-Sensor Device for Traceable Monitoring of Indoor Environmental Quality. SENSORS (BASEL, SWITZERLAND) 2024; 24:2893. [PMID: 38732999 PMCID: PMC11086227 DOI: 10.3390/s24092893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
The Indoor Environmental Quality (IEQ) combines thermal, visual, acoustic, and air-quality conditions in indoor environments and affects occupants' health, well-being, and comfort. Performing continuous monitoring to assess IEQ is increasingly proving to be important, also due to the large amount of time that people spend in closed spaces. In the present study, the design, development, and metrological characterization of a low-cost multi-sensor device is presented. The device is part of a wider system, hereafter referred to as PROMET&O (PROactive Monitoring for indoor EnvironmenTal quality & cOmfort), that also includes a questionnaire for the collection of occupants' feedback on comfort perception and a dashboard to show end users all monitored data. The PROMET&O multi-sensor monitors the quality conditions of indoor environments thanks to a set of low-cost sensors that measure air temperature, relative humidity, illuminance, sound pressure level, carbon monoxide, carbon dioxide, nitrogen dioxide, particulate matter, volatile organic compounds, and formaldehyde. The device architecture is described, and the design criteria related to measurement requirements are highlighted. Particular attention is paid to the calibration of the device to ensure the metrological traceability of the measurements. Calibration procedures, based on the comparison to reference standards and following commonly employed or ad hoc developed technical procedures, were defined and applied to the bare sensors of air temperature and relative humidity, carbon dioxide, illuminance, sound pressure level, particulate matter, and formaldehyde. The next calibration phase in the laboratory will be aimed at analyzing the mutual influences of the assembled multi-sensor hardware components and refining the calibration functions.
Collapse
Affiliation(s)
| | - Giuseppina Arcamone
- Department of Energy, Politecnico di Torino, 10129 Turin, Italy; (G.A.); (A.A.); (A.L.)
| | - Arianna Astolfi
- Department of Energy, Politecnico di Torino, 10129 Turin, Italy; (G.A.); (A.A.); (A.L.)
| | - Alberto Barbaro
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Turin, Italy (A.C.); (F.F.); (E.R.)
| | - Alessio Carullo
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Turin, Italy (A.C.); (F.F.); (E.R.)
| | - Pietro Chiavassa
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy; (P.C.); (G.R.-E.)
| | - Marina Clerico
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy (D.G.); (N.M.)
| | - Stefano Fantucci
- Department of Energy, Politecnico di Torino, 10129 Turin, Italy; (G.A.); (A.A.); (A.L.)
| | - Franco Fiori
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Turin, Italy (A.C.); (F.F.); (E.R.)
| | - Davide Gallione
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy (D.G.); (N.M.)
| | - Edoardo Giusto
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy; (P.C.); (G.R.-E.)
- Department of Electrical and Information Technology Engineering, Università di Napoli Federico II, 80138 Naples, Italy
| | - Alice Lorenzati
- Department of Energy, Politecnico di Torino, 10129 Turin, Italy; (G.A.); (A.A.); (A.L.)
| | - Nicole Mastromatteo
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy (D.G.); (N.M.)
| | - Bartolomeo Montrucchio
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy; (P.C.); (G.R.-E.)
| | - Anna Pellegrino
- Department of Energy, Politecnico di Torino, 10129 Turin, Italy; (G.A.); (A.A.); (A.L.)
| | - Gabriele Piccablotto
- LAMSA—Department of Architecture and Design, Politecnico di Torino, 10129 Turin, Italy
| | - Giuseppina Emma Puglisi
- Logistics and Sustainability Department, Campus Management, Politecnico di Torino, 10129 Turin, Italy
| | - Gustavo Ramirez-Espinosa
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy; (P.C.); (G.R.-E.)
- Department of Electronics, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Erica Raviola
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Turin, Italy (A.C.); (F.F.); (E.R.)
| | - Antonio Servetti
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy; (P.C.); (G.R.-E.)
| | - Louena Shtrepi
- Department of Energy, Politecnico di Torino, 10129 Turin, Italy; (G.A.); (A.A.); (A.L.)
| |
Collapse
|
3
|
Panigrahi PK, Chandu B, Puvvada N. Recent Advances in Nanostructured Materials for Application as Gas Sensors. ACS OMEGA 2024; 9:3092-3122. [PMID: 38284032 PMCID: PMC10809240 DOI: 10.1021/acsomega.3c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Many different industries, including the pharmaceutical, medical engineering, clinical diagnostic, public safety, and food monitoring industries, use gas sensors. The inherent qualities of nanomaterials, such as their capacity to chemically or physically adsorb gas, and their great ratio of surface to volume make them excellent candidates for use in gas sensing technology. Additionally, the nanomaterial-based gas sensors have excellent selectivity, reproducibility, durability, and cost-effectiveness. This Review article offers a summary of the research on gas sensor devices based on nanomaterials of various sizes. The numerous nanomaterial-based gas sensors, their manufacturing procedures and sensing mechanisms, and most recent advancements are all covered in detail. In addition, evaluations and comparisons of the key characteristics of gas sensing systems made from various dimensional nanomaterials were done.
Collapse
Affiliation(s)
- Pravas Kumar Panigrahi
- Department
of Basic Science, Government College of
Engineering, Kalahandi, Odisha 766003, India
| | - Basavaiah Chandu
- Department
of Nanotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522510, India
| | - Nagaprasad Puvvada
- Department
of Chemistry, School of Advanced Sciences, VIT-AP University, Vijayawada, Andhra Pradesh522237, India
| |
Collapse
|
4
|
Pazniak H, Plugin IA, Sheverdyaeva PM, Rapenne L, Varezhnikov AS, Agresti A, Pescetelli S, Moras P, Kostin KB, Gorokhovsky AV, Ouisse T, Sysoev VV. Alcohol Vapor Sensor Based on Quasi-2D Nb 2O 5 Derived from Oxidized Nb 2CT z MXenes. SENSORS (BASEL, SWITZERLAND) 2023; 24:38. [PMID: 38202899 PMCID: PMC10780349 DOI: 10.3390/s24010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
MXenes are two-dimensional (2D) materials with a great potential for sensor applications due to their high aspect ratio and fully functionalized surface that can be tuned for specific gas adsorption. Here, we demonstrate that the Nb2CTz-based sensor exhibits high performance towards alcohol vapors at temperatures up to 300-350 °C, with the best sensitivity towards ethanol. We attribute the observed remarkable chemiresistive effect of this material to the formation of quasi-2D Nb2O5 sheets as the result of the oxidation of Nb-based MXenes. These findings are supported by synchrotron X-ray photoelectron spectroscopy studies together with X-ray diffraction and electron microscopy observations. For analyte selectivity, we employ a multisensor approach where the gas recognition is achieved by linear discriminant analysis of the vector response of the on-chip sensor array. The reported protocol demonstrates that MXene layers are efficient precursors for the derivation of 2D oxide architectures, which are suitable for developing gas sensors and sensor arrays.
Collapse
Affiliation(s)
- Hanna Pazniak
- Laboratoire des Matériaux et du Génie Physique, Institut Polytechnique de Grenoble, Centre National de la Recherche Scientifique, Université Grenoble Alpes, CS 50257, 38016 Grenoble, Cedex 1, France; (L.R.); (T.O.)
| | - Ilya A. Plugin
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| | - Polina M. Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), SS 14, Km 163.5, 34149 Trieste, Italy; (P.M.S.); (P.M.)
| | - Laetitia Rapenne
- Laboratoire des Matériaux et du Génie Physique, Institut Polytechnique de Grenoble, Centre National de la Recherche Scientifique, Université Grenoble Alpes, CS 50257, 38016 Grenoble, Cedex 1, France; (L.R.); (T.O.)
| | - Alexey S. Varezhnikov
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| | - Antonio Agresti
- Center for Hybrid and Organic Solar Energy, Electronic Engineering Department, University of Rome Tor Vergata, 00133 Rome, Italy; (A.A.); (S.P.)
| | - Sara Pescetelli
- Center for Hybrid and Organic Solar Energy, Electronic Engineering Department, University of Rome Tor Vergata, 00133 Rome, Italy; (A.A.); (S.P.)
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), SS 14, Km 163.5, 34149 Trieste, Italy; (P.M.S.); (P.M.)
| | - Konstantin B. Kostin
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| | - Alexander V. Gorokhovsky
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| | - Thierry Ouisse
- Laboratoire des Matériaux et du Génie Physique, Institut Polytechnique de Grenoble, Centre National de la Recherche Scientifique, Université Grenoble Alpes, CS 50257, 38016 Grenoble, Cedex 1, France; (L.R.); (T.O.)
| | - Victor V. Sysoev
- Physico-Technical Institute, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov 410054, Russia; (I.A.P.); (A.S.V.); (K.B.K.); (A.V.G.)
| |
Collapse
|
5
|
Chen J, Ling Y, Yuan X, He Y, Li S, Wang G, Zhang Z, Wang G. Highly Sensitive Detection of Formaldehyde by Laser-Induced Graphene-Coated Silver Nanoparticles Electrochemical Sensing Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12762-12773. [PMID: 37642387 DOI: 10.1021/acs.langmuir.3c01472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Formaldehyde (HCHO) poses a grave threat to human health because of its toxicity, but its accurate, sensitive, and rapid detection in aqueous solutions remains a major challenge. This study proposes a novel electrochemical sensor composed of a graphene-based electrode that is prepared via laser induction technology. The precursor material, polyimide, is modified via the metal ion exchange method, and the detective electrode is coated with graphene and silver nanoparticles. And the special structure of graphene-coated Ag was demonstrated using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) results show that graphene provides more sites for Ag NRs to be exposed and increases the surface area of contact between the solution and the detection object. In addition, differential pulse voltammetry (DPV) analysis exhibits high linearity over the HCHO concentration range from 0.05 to 5 μg/mL, with a detection limit of 0.011 μg/mL (S/N = 3). The Ag NPs in the electrochemical reaction will adsorb the intermediate •CO and •OH, catalyze their combination, and finally convert to CO2 and H2O, respectively. A microdetection device, specially designed for use with commercial micro-workstations, is employed to fully demonstrate the practical application of the electrode, which paves a way for developing formaldehyde electrochemical sensors.
Collapse
Affiliation(s)
- Jianyue Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yunhan Ling
- Laboratory of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoming Yuan
- Laboratory of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuyang He
- Laboratory of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, China
| | - Shilin Li
- Laboratory of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, China
| | - Guan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengjun Zhang
- Laboratory of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, China
| | - Guixin Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Abu-Rayyan A, Ahmad I, Bahtiti NH, Muhmood T, Bondock S, Abohashrh M, Faheem H, Tehreem N, Yasmeen A, Waseem S, Arif T, Al-Bagawi AH, Abdou MM. Recent Progress in the Development of Organic Chemosensors for Formaldehyde Detection. ACS OMEGA 2023; 8:14859-14872. [PMID: 37151539 PMCID: PMC10157691 DOI: 10.1021/acsomega.2c07724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Formaldehyde has become a prominent topic of interest because of its simple molecular structure, release from various compounds in the near vicinity of humans, and associated hazards. Thus, several researchers designed sophisticated instrumentations for formaldehyde detection that exhibit real-time sensing properties and are cost-effective and portable with high detection limits. On these grounds, this review is centered on an analysis of optical chemosensors for formaldehyde that specifically fall under the broad spectrum of organic probes. In this case, this review discusses different organic functionalities, including amines, imines, aromatic pillar arenes, β-ketoesters, and β-diketones, taking part in various reaction mechanisms ranging from aza-Cope rearrangement and Schiff base and Hanztch reactions to aldimine condensation. In addition, this review distinguishes reaction mechanisms according to photophysical phenomena, that is, aggregation-induced emission, photoinduced electron transfer, and intramolecular charge transfer. Furthermore, it addresses the instrumentation involved in gas-based and liquid formaldehyde detection. Finally, it discusses the gaps in existing technologies followed by a succinct set of recommendations for future research.
Collapse
Affiliation(s)
- Ahmed Abu-Rayyan
- Faculty
of Arts & Science, Applied Science Private
University, Amman 11931, Jordan
| | - Imtiaz Ahmad
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
- Imtiaz Ahmad ()
| | - Nawal H. Bahtiti
- Faculty
of Arts & Science, Applied Science Private
University, Amman 11931, Jordan
| | - Tahir Muhmood
- College
of Science, Nanjing Forestry University, Nanjing 210037, China
- Tahir Muhmood ()
| | - Samir Bondock
- Chemistry
Department, Faculty of Science, King Khalid
University, 9004 Abha, Kingdom of Saudi Arabia
- Chemistry
Department, Faculty of Science, Mansoura
University, 35516 Mansoura, Egypt
| | - Mohammed Abohashrh
- Department
of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Kingdom
of Saudi Arabia
| | - Habiba Faheem
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Nimra Tehreem
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Aliya Yasmeen
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Shiza Waseem
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Tayabba Arif
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Amal H. Al-Bagawi
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il
City, Hail 2440, Kingdom of Saudi Arabia
| | - Moaz M. Abdou
- Egyptian
Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
- Moaz
M. Abdou ()
| |
Collapse
|
7
|
Jiang K, Chen T, Sun J, Quan H, Zhou T. Pd/Pt-Bimetallic-Nanoparticle-Doped In 2O 3 Hollow Microspheres for Rapid and Sensitive H 2S Sensing at Low Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:668. [PMID: 36839036 PMCID: PMC9963627 DOI: 10.3390/nano13040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
H2S is a poisonous gas that is widespread in nature and human activities. Its rapid and sensitive detection is essential to prevent it from damaging health. Herein, we report Pd- and Pt-bimetallic-nanoparticle-doped In2O3 hollow microspheres that are synthesized using solvothermal and in situ reduction methods for H2S detection. The structure of as-synthesized 1 at% Pd/Pt-In2O3 comprises porous hollow microspheres assembled from In2O3 nanosheets with Pd and Pt bimetallic nanoparticles loaded on its surface. The response of 1 at% Pd/Pt-In2O3 to 5 ppm H2S is 140 (70 times that of pure In2O3), and the response time is 3 s at a low temperature of 50 °C. In addition, it can detect trace H2S (as low as 50 ppb) and has superior selectivity and an excellent anti-interference ability. These outstanding gas-sensing performances of 1 at% Pd/Pt-In2O3 are attributed to the chemical sensitization of Pt, the electronic sensitization of Pd, and the synergistic effect between them. This work supplements the research of In2O3-based H2S sensors and proves that Pd- and Pt-bimetallic-doped In2O3 can be applied in the detection of H2S.
Collapse
Affiliation(s)
- Kaisheng Jiang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100194, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100194, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhai Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100194, China
| | - Hao Quan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100194, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianye Zhou
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100194, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|