1
|
Zarif ME, Bita B, Yehia-Alexe SA, Negut I, Gradisteanu Pircalabioru G, Andronescu E, Groza A. Biological and Physicochemical Analysis of Sr-Doped Hydroxyapatite/Chitosan Composite Layers. Polymers (Basel) 2024; 16:1922. [PMID: 39000777 PMCID: PMC11244040 DOI: 10.3390/polym16131922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
In this work results are presented on the evaluation of HAp, HApSr, HAp_CS, and HApSr_CS layers deposited on Ti substrates regarding L929 cell viability and cytotoxicity as well as antimicrobial activity against Staphylococcus aureus, in connection with their physicochemical properties. The HAp and HApSr layers generated by radio-frequency magnetron sputtering technique were further covered with chitosan by a matrix-assisted pulsed laser evaporation technique. During the plasma depositions, the Ti substrates were heated externally by a home-made oven above 100 °C. The HApSr_CS layers generated on the unpolished Ti substrates at 100 °C and 400 °C showed the highest biocompatibility properties and antimicrobial activity against Staphylococcus aureus. The morphology of the layer surfaces, revealed by scanning electron microscopy, is dependent on substrate temperature and substrate surface roughness. The optically polished surfaces of Ti substrates revealed grain-like and microchannel structure morphologies of the layers deposited at 25 °C substrate temperature and 400 °C, respectively. Chitosan has no major influence on HAp and HApSr layer surface morphologies. X-ray photoelectron spectroscopy indicated the presence of Ca 2p3/2 peak characteristic of the HAp structure even in the case of the HApSr_CS samples generated at a 400 °C substrate temperature. Fourier transform infrared spectroscopy investigations showed shifts in the wavenumber positions of the P-O absorption bands as a function of Sr or chitosan presence in the HAp layers generated at 25, 100, and 400 °C substrate temperatures.
Collapse
Affiliation(s)
- Maria Elena Zarif
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Bogdan Bita
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Sasa Alexandra Yehia-Alexe
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov Str., District 5, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andreea Groza
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
| |
Collapse
|