1
|
A comprehensive review of chitosan applications in paper science and technologies. Carbohydr Polym 2023; 309:120665. [PMID: 36906368 DOI: 10.1016/j.carbpol.2023.120665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Using environmentally friendly biomaterials in different aspects of human life has been considered extensively. In this respect, different biomaterials have been identified and different applications have been found for them. Currently, chitosan, the well-known derivative of the second most abundant polysaccharide in the nature (i.e., chitin), has been receiving a lot of attention. This unique biomaterial can be defined as a renewable, high cationic charge density, antibacterial, biodegradable, biocompatible, non-toxic biomaterial with high compatibility with cellulose structure, where it can be used in different applications. This review takes a deep and comprehensive look at chitosan and its derivative applications in different aspects of papermaking.
Collapse
|
2
|
Woźniak M. Antifungal Agents in Wood Protection—A Review. Molecules 2022; 27:molecules27196392. [PMID: 36234929 PMCID: PMC9570806 DOI: 10.3390/molecules27196392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The biodegradation of wood and wood products caused by fungi is recognized as one of the most significant problems worldwide. To extend the service life of wood products, wood is treated with preservatives, often with inorganic compounds or synthetic pesticides that have a negative impact on the environment. Therefore, the development of new, environmentally friendly wood preservatives is being carried out in research centers around the world. The search for natural, plant, or animal derivatives as well as obtaining synthetic compounds that will be safe for humans and do not pollute the environment, while at the same time present biological activity is crucial in terms of environmental protection. The review paper presents information in the literature on the substances and chemical compounds of natural origin (plant and animal derivatives) and synthetic compounds with a low environmental impact, showing antifungal properties, used in research on the ecological protection of wood. The review includes literature reports on the potential application of various antifungal agents including plant extracts, alkaloids, essential oils and their components, propolis extract, chitosan, ionic liquids, silicon compounds, and nanoparticles as well as their combinations.
Collapse
Affiliation(s)
- Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
3
|
Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. COATINGS 2021. [DOI: 10.3390/coatings11121514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increasing the use of wood in buildings is regarded by many as a key solution to tackle climate change. For this reason, a lot of research is carried out to develop new and innovative wood surface improvements and make wood more appealing through features such as increased durability, fire-retardancy, superhydrophobicity, and self-healing. However, in order to have a positive impact on the society, these surface improvements must be applied in real buildings. In this review, the last five years of research in the domain of wood surface improvements and modifications is first presented by sorting the latest innovations into different trends. Afterward, these trends are correlated to specifications representing different normative, ecologic and economic factors which must be considered when expecting to introduce a wood treatment to the market. With this review, the authors hope to help researchers to take into consideration the different factors influencing whether new innovations can leave the research laboratory or not, and thereby facilitate the introduction of new wood surface treatments in the society.
Collapse
|
4
|
Oil in Water Nanoemulsions Loaded with Tebuconazole for Populus Wood Protection against White- and Brown-Rot Fungi. FORESTS 2021. [DOI: 10.3390/f12091234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eugenol in water nanoemulsions loaded with tebuconazole appear as a very promising alternative formulations for wood protection against xylophagous fungi that are the main species responsible for different rots in wood structures. The dispersions as prepared and upon dilution (impregnation mixtures) were characterized by the apparent hydrodynamic diameter distribution of the oil droplets loaded with tebuconazole and their long-term stability. The impregnation mixtures were applied on wood of Populus canadensis I-214 clone by using a pressure-vacuum system, and the effectiveness against fungal degradation by Gloeophyllum sepiarium and Pycnoporus sanguineus fungi was determined. The retention of tebuconazole in wood was about 40% of the amount contained in the impregnation mixtures. The results showed that the impregnation process leads to a long-term antifungal protection to the wood, with the mass loss after 16 weeks being reduced more than 10 times in relation to the control (untreated poplar wood) and the reference wood (untreated beech wood).
Collapse
|
5
|
Woźniak M, Mania P, Roszyk E, Ratajczak I. Bending Strength of Wood Treated with Propolis Extract and Silicon Compounds. MATERIALS 2021; 14:ma14040819. [PMID: 33572102 PMCID: PMC7915019 DOI: 10.3390/ma14040819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
The modification of wood and its treatment with various preservatives may affect its mechanical properties, hence the knowledge of the character changes in wood caused by impregnation is of great importance. Therefore, the aim of the research was to determine the effect of impregnation, with the propolis-silane preparation (EEP-MPTMOS/TEOS) consisting of the propolis extract (EEP) and silicon compounds: 3-(trimethoxysilyl)propyl methacrylate (MPTMOS) and tetraethoxysilane (TEOS), on the bending strength of treated wood. Moreover, in the study wood treated with components of the propolis-silane formulation was used, namely 70% ethanol, the propolis extract, and silanes (MPTMOS/TEOS). In order to determine whether the impregnation of wood affects its long-term bending, creep tests were performed depending on the humidity. The impregnation of wood with the propolis extract and the propolis-silane preparation (EEP-MPTMOS/TEOS) contributed to the increase in modulus of rapture and work to maximum load values compared to the untreated wood. In dry wood condition, the wood treated with EEP and EEP-MPTMOS/TEOS was characterized by lower modulus of elasticity values than the control samples. In turn, in wet wood condition, wood treated with the propolis-silane preparation showed an increase in the MOE value. Moreover, the impregnation of wood had an influence on the wood creep process under bending loads. The treated wood was characterized by higher relative creep compliance than the untreated wood. The exception was the wood impregnated with EEP-MPTMOS/TEOS, which showed comparable relative creep compliance to the control samples. The presented results indicate that wood treated with a bio-friendly preparation based on propolis and silicon compounds can be used in various application and also in variable humidity conditions.
Collapse
Affiliation(s)
- Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60625 Poznań, Poland;
- Correspondence:
| | - Przemysław Mania
- Department of Wood Science and Thermal Technics, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60627 Poznań, Poland; (P.M.); (E.R.)
| | - Edward Roszyk
- Department of Wood Science and Thermal Technics, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60627 Poznań, Poland; (P.M.); (E.R.)
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60625 Poznań, Poland;
| |
Collapse
|
6
|
Propolis and Organosilanes as Innovative Hybrid Modifiers in Wood-Based Polymer Composites. MATERIALS 2021; 14:ma14020464. [PMID: 33478032 PMCID: PMC7836005 DOI: 10.3390/ma14020464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/19/2023]
Abstract
The article presents characteristics of wood/polypropylene composites, where the wood was treated with propolis extract (EEP) and innovative propolis-silane formulations. Special interest in propolis for wood impregnation is due to its antimicrobial properties. One propolis-silane formulation (EEP-TEOS/VTMOS) consisted of EEP, tetraethyl orthosilicate (TEOS), and vinyltrimethoxysilane (VTMOS), while the other (EEP-TEOS/OTEOS) contained EEP, tetraethyl orthosilicate (TEOS), and octyltriethoxysilane (OTEOS). The treated wood fillers were characterized by Fourier transform infrared spectroscopy (FTIR), atomic absorption spectrometry (AAS), and X-ray diffraction (XRD), while the composites were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and optical microscopy. The wood treated with EEP and propolis-silane formulations showed resistance against moulds, including Aspergillus niger, Chaetomium globosum, and Trichoderma viride. The chemical analyses confirmed presence of silanes and constituents of propolis in wood structure. In addition, treatment of wood with the propolis-silane formulations produced significant changes in nucleating abilities of wood in the polypropylene matrix, which was confirmed by an increase in crystallization temperature and crystal conversion, as well as a decrease in half-time of crystallization parameters compared to the untreated polymer matrix. In all the composites, the formation of a transcrystalline layer was observed, with the greatest rate recorded for the composite with the filler treated with EEP-TEOS/OTEOS. Moreover, impregnation of wood with propolis-silane formulations resulted in a considerable improvement of strength properties in the produced composites. A dependence was found between changes in the polymorphic structures of the polypropylene matrix and strength properties of composite materials. It needs to be stressed that to date literature sources have not reported on treatment of wood fillers using bifunctional modifiers providing a simultaneous effect of compatibility in the polymer-filler system or any protective effect against fungi.
Collapse
|
7
|
Chemical, Biological and Mechanical Characterization of Wood Treated with Propolis Extract and Silicon Compounds. FORESTS 2020. [DOI: 10.3390/f11090907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The development of new bio-friendly alternatives for wood conservation is of great interest and necessary for environmental protection. In this paper, the preparations based on the propolis extract and silicon compounds were used as green wood preservatives. The wood was treated with 15% propolis extract (EEP) and two propolis-silane preparations, namely, EEP-VTMOS/TEOS (EEP with vinyltrimethoxysilane and tetraethyl orthosilicate) and EEP-MPTMOS/TEOS (EEP with 3-(trimethoxysilyl) propyl methacrylate and tetraethyl orthosilicate). The aim of the research was to determine the properties of treated wood, which was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), atomic absorption spectroscopy (AAS), X-ray fluorescence (XRF), and scanning electron microscopy (SEM). Moreover, the resistance against brown-rot fungus Coniophora puteana and the mechanical properties of treated wood were also determined. The analysis of phenolic compounds concentration in treated wood indicated that phenols were in greater extent leached from wood treated with the propolis extract than from wood impregnated with the propolis-silane preparations. The presence of silicon in treated wood both before and after leaching was confirmed by CP MAS NMR measurements. In turn, AAS and XRF analyses indicated that the degree of Si leaching from wood impregnated with EEP-VTMOS/TEOS was approximately two times lower than from EEP-MPTMOS/TEOS treated wood. The results of chemical analyses confirmed that the constituents of the propolis-silane preparations formed permanent bonds with wood. In turn, the results of the antifungal efficacy against C. puteana showed that the propolis extract and the propolis-silane preparations limited the fungus activity, even the wood was subjected to leaching procedure. The treated wood showed an increase in bending strength and a decrease in the modulus of elasticity compared to untreated wood. The obtained results indicate that the propolis-silane preparations can be promising green wood preservatives, harmless for the natural environment.
Collapse
|
8
|
Abstract
Nowadays, there is a growing interest in extending the service life of wood and wood products by applying natural substances that are harmless to humans and the environment. In this paper, propolis was used as an eco-friendly wood preservative. The aim of this study was to determine the resistance of Scots pine wood treated with the propolis extract against brown-rot fungus Coniophora puteana. The wood biodegradation was assessed by gravimetric method, as well as by the analysis of ergosterol concentration in decayed wood and by the determination of changes in the wood structure by means of Fourier transform infrared spectroscopy. The results indicated that the impregnation of wood with propolis extract above 12% concentration limited fungal decay. The mass loss of wood treated with 18.9% propolis extract was 2.3% and was over 21 times lower than that for untreated wood. The analysis of ergosterol content and the changes in wood structure also confirmed that the propolis extract above 12% concentration protected wood against decay caused by C. puteana. Moreover, the propolis extract used in wood impregnation was rich in phenolic compounds, mainly chrysin, pinocembrin and galangin, which possess antimicrobial activity. The obtained results indicate that the extract of Polish propolis can be a promising natural wood preservative, safe for humans and the natural environment.
Collapse
|
9
|
White-Rot Fungi Control on Populus spp. Wood by Pressure Treatments with Silver Nanoparticles, Chitosan Oligomers and Propolis. FORESTS 2019. [DOI: 10.3390/f10100885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is growing interest in the development of non-toxic, natural wood preservation agents to replace conventional chemicals. In this paper, the antifungal activities of silver nanoparticles, chitosan oligomers, and propolis ethanolic extract were evaluated against white-rot fungus Trametes versicolor (L.) Lloyd, with a view to protecting Populus spp. wood. In order to create a more realistic in-service type environment, the biocidal products were assessed according to EN:113 European standard, instead of using routine in vitro antimicrobial susceptibility testing methods. Wood blocks were impregnated with the aforementioned antifungal agents by the vacuum-pressure method in an autoclave, and their biodeterioration was monitored over 16 weeks. The results showed that treatments based on silver nanoparticles, at concentrations ranging from 5 to 20 ppm, presented high antifungal activity, protecting the wood from fungal attack over time, with weight losses in the range of 8.49% to 8.94% after 16 weeks, versus 24.79% weight loss in the control (untreated) samples. This was confirmed by SEM and optical microscopy images, which showed a noticeably higher cell wall degradation in control samples than in samples treated with silver nanoparticles. On the other hand, the efficacy of the treatments based on chitosan oligomers and propolis gradually decreased over time, which would be a limiting factor for their application as wood preservatives. The nanometal-based approach is thus posed as the preferred choice for the industrial treatment of poplar wood aimed at wood-based engineering products (plywood, laminated veneer lumber, cross-laminated timber, etc.).
Collapse
|