1
|
Ovchynnykova O, Booth JD, Cocroft TM, Sukhyy KM, Kapusta K. In silico Study on Natural Chemical Compounds from Citric Essential Oils as Potential Inhibitors of an Omicron (BA.1) SARS-CoV-2 Mutants' Spike Glycoprotein. Curr Comput Aided Drug Des 2025; 21:466-478. [PMID: 38178668 DOI: 10.2174/0115734099275132231213055138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND SARS-CoV-2's remarkable capacity for genetic mutation enables it to swiftly adapt to environmental changes, influencing critical attributes, such as antigenicity and transmissibility. Thus, multi-target inhibitors capable of effectively combating various viral mutants concurrently are of great interest. This study aimed to investigate natural compounds that could unitedly inhibit spike glycoproteins of various Omicron mutants. Implementation of various in silico approaches allows us to scan a library of compounds against a variety of mutants in order to find the ones that would inhibit the viral entry disregard of occurred mutations. METHODS An extensive analysis of relevant literature was conducted to compile a library of chemical compounds sourced from citrus essential oils. Ten homology models representing mutants of the Omicron variant were generated, including the latest 23F clade (EG.5.1), and the compound library was screened against them. Subsequently, employing comprehensive molecular docking and molecular dynamics simulations, we successfully identified promising compounds that exhibited sufficient binding efficacy towards the receptor binding domains (RBDs) of the mutant viral strains. The scoring of ligands was based on their average potency against all models generated herein, in addition to a reference Omicron RBD structure. Furthermore, the toxicity profile of the highest-scoring compounds was predicted. RESULTS Out of ten built homology models, seven were successfully validated and showed to be reliable for in silico studies. Three models of clades 22C, 22D, and 22E had major deviations in their secondary structure and needed further refinement. Notably, through a 100 nanosecond molecular dynamics simulation, terpinen-4-ol emerged as a potent inhibitor of the Omicron SARS-CoV-2 RBD from the 21K clade (BA.1); however, it did not show high stability in complexes with other mutants. This suggests the need for the utilization of a larger library of chemical compounds as potential inhibitors. CONCLUSION The outcomes of this investigation hold significant potential for the utilization of a homology modeling approach for the prediction of RBD's secondary structure based on its sequence when the 3D structure of a mutated protein is not available. This opens the opportunities for further advancing the drug discovery process, offering novel avenues for the development of multifunctional, non-toxic natural medications.
Collapse
Affiliation(s)
- Olha Ovchynnykova
- Ukrainian State University of Chemical Technology, Dnipro, 49005, Ukraine
| | - Jordhan D Booth
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS, 39174, USA
| | - Trey M Cocroft
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS, 39174, USA
| | | | - Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS, 39174, USA
| |
Collapse
|
2
|
Shiekh RAE, Atwa AM, Elgindy AM, Mustafa AM, Senna MM, Alkabbani MA, Ibrahim KM. Therapeutic applications of eucalyptus essential oils. Inflammopharmacology 2025; 33:163-182. [PMID: 39499358 PMCID: PMC11799053 DOI: 10.1007/s10787-024-01588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
Eucalyptus essential oils (EEOs) have gained significant attention recently anticipated to their broad range of prospective benefits in various biological applications. They have been proven to have strong antibacterial properties against a variety of bacteria, fungi, and viruses. This makes them valuable in combating infections and supporting overall hygiene. The active compounds present in these oils can help alleviate inflammation, making them valuable in addressing inflammatory conditions such as arthritis, respiratory ailments, and skin disorders. Respiratory health benefits are another prominent aspect of EEOs. Inhalation of these oils can help promote clear airways, relieve congestion, and ease symptoms of respiratory conditions like coughs, colds, and sinusitis. They are often utilized in inhalation therapies and chest rubs. They can be used topically or in massage oils to alleviate muscle and joint pain. Furthermore, these oils have shown potential in supporting wound healing. Their antimicrobial activity helps prevent infection, while their anti-inflammatory and analgesic properties contribute to reducing inflammation and pain associated with wounds. In aromatherapy, EEOs are renowned for their invigorating and uplifting qualities, promoting mental clarity, relaxation, and stress relief. Overall, EEOs hold great promise in biological applications, offering a natural and versatile approach to promote health and well-being. Continued research and exploration of their therapeutic potential will further unveil their benefits and broaden their applications in various fields.
Collapse
Affiliation(s)
- Riham A El Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | - Kawther Magdy Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
3
|
Lohachova KO, Kyrychenko A, Kalugin ON. Critical assessment of popular biomolecular force fields for molecular dynamics simulations of folding and enzymatic activity of main protease of coronavirus SARS-CoV-2. Biophys Chem 2024; 311:107258. [PMID: 38776839 DOI: 10.1016/j.bpc.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The main cysteine protease (Mpro) of coronavirus SARS-CoV-2 has become a promising target for computational development in anti-COVID-19 treatments. Here, we benchmarked the performance of six biomolecular molecular dynamics (MD) force fields (OPLS-AA, CHARMM27, CHARMM36, AMBER03, AMBER14SB and GROMOS G54A7) and three water models (TIP3P, TIP4P and SPC) for reproducing the native fold and the enzymatic activity of Mpro as monomeric and dimeric units. The MD sampling up to 1 μs suggested that the proper choice of the force fields and water models plays an essential role in reproducing the tertiary structure and the inter-residue distance between the catalytic dyad His41-Cys145. We found that while most benchmarked all-atom force fields reproduce well the native fold of Mpro, the CHARMM27/TIP3P and OPLS-AA/TIP4P setups revealed a good performance in reproducing the structure of the catalytic domain. In addition, these FF setups were also well-adopted for MD sampling of Mpro at the physiologic conditions by mimicking the presence of 100 mM NaCl and the elevated temperature of 310 K. Finally, both FFs were also performed well in reproducing the native fold of Mpro in a dimeric form. Therefore, comparing the preservation of the native fold of Mpro and the stability of its catalytic site architecture, our MD benchmarking suggests that the OPLS-AA/TIP4P and CHARMM27/TIP3P MD setups at the physiologic conditions may be well-suited for rapid in silico screening and developing broad-spectrum anti-coronaviral therapeutic agents.
Collapse
Affiliation(s)
- Kateryna O Lohachova
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine.
| | - Oleg N Kalugin
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
| |
Collapse
|
4
|
Joshi S, Singh S, Sharma R, Vats S, Alam A. Gas chromatography-mass spectrometry (GC-MS) profiling of aqueous methanol fraction of Plagiochasma appendiculatum Lehm. & Lindenb. and Sphagnum fimbriatum Wilson for probable antiviral potential. VEGETOS (BAREILLY, INDIA) 2023; 36:87-92. [PMID: 36061344 PMCID: PMC9426370 DOI: 10.1007/s42535-022-00458-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
The bryophytes consist of liverworts, mosses, and hornworts, among which the liverworts are quite different in having cellular oil bodies and contain numerous terpenoids, acetogenins, quinones, phenylpropanoids, flavonoids, etc. These metabolites exhibit interesting biological activity such as allergenic response, insecticide, cytotoxic, neurotrophic, antimicrobial, and anti-HIV actions, etc. Though several bioactive compounds have been isolated in many liverworts, yet most of the liverworts have been unexplored till date regarding their phytochemistry. The ability of liverworts to generate a wide range of important phytochemicals makes them a hoard of bioactive compounds. In the past, a few species of bryophytes have been evaluated against a few viruses and interesting results were obtained that showed their role as an immunity enhancer against viral infection. The phytoconstituents found in liverworts and mosses can be useful to increase human immunity against a variety of viruses, including SARS-CoV-2. Keeping this in view, one of the most developed and robust metabolomics technologies, Gas chromatography-mass spectroscopy (GC-MS) was used to estimate the various phytoconstituents found in a commonly growing thalloid liverwort, Plagiochasma appendiculatum, and moss Sphagnum fimbriatum. The obtained profiles were appraised for their bioactive potential and probable role as antiviral agents.
Collapse
Affiliation(s)
- Supriya Joshi
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan 304022 India
| | - Swati Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan 304022 India
| | - Rimjhim Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan 304022 India
| | - Sharad Vats
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan 304022 India
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan 304022 India
| |
Collapse
|
5
|
Lopes SM, de Medeiros HIR, Scotti MT, Scotti L. Natural Products Against COVID-19 Inflammation: A Mini-Review. Comb Chem High Throughput Screen 2022; 25:2358-2369. [PMID: 35088662 DOI: 10.2174/1386207325666220128114547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 01/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is a virus whose genetic material is positive single-stranded RNA, being responsible for coronavirus disease 2019 (COVID- 19), an infection that compromises the lungs and consequently the respiratory capacity of the infected individual, according to the WHO in November 2021, 249,743,428 cases were confirmed, of which 5,047,652 individuals died due to complications resulting from the infection caused by SARSCOV- 2. As the infection progresses, the individual may experience loss of smell and taste, as well as breathing difficulties, severe respiratory failure, multiple organ failure, and death. Due to this new epidemiological agent in March 2020 it was announced by the director general of the World Health Organization (WHO) a pandemic status, and with that, many research groups are looking for new therapeutic alternatives through synthetic and natural bioactives. This research is a literature review of some in silico studies involving natural products against COVID-19 inflammation published in 2020 and 2021. Work like this presents relevant information to the scientific community, boosting future research and encouraging the use of natural products for the search for new antivirals against COVID-19.
Collapse
Affiliation(s)
- Simone Mendes Lopes
- Postgraduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil
| | - Herbert Igor Rodrigues de Medeiros
- Postgraduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil.,Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil
| |
Collapse
|
6
|
Fluorine Atoms on C 6H 5-Corrole Affect the Interaction with M pro and PL pro Proteases of SARS-CoV-2: Molecular Docking and 2D-QSAR Approaches. Int J Mol Sci 2022; 23:ijms231810936. [PMID: 36142848 PMCID: PMC9505658 DOI: 10.3390/ijms231810936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The chymotrypsin-like cysteine protease (3CLpro, also known as main protease—Mpro) and papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been used as the main targets for screening potential synthetic inhibitors for posterior in vitro evaluation of the most promising compounds. In this sense, the present work reports for the first time the evaluation of the interaction between Mpro/PLpro with a series of 17 porphyrin analogues-corrole (C1), meso-aryl-corrole (C2), and 15 fluorinated-meso-aryl-corrole derivatives (C3–C17) via molecular docking calculations. The impact of fluorine atoms on meso-aryl-corrole structure was also evaluated in terms of binding affinity and physical-chemical properties by two-dimensional quantitative structure–activity relationship (2D-QSAR). The presence of phenyl moieties increased the binding capacity of corrole for both proteases and depending on the position of fluorine atoms might impact positively or negatively the binding capacity. For Mpro the para-fluorine atoms might decrease drastically the binding capacity, while for PLpro there was a certain increase in the binding affinity of fluorinated-corroles with the increase of fluorine atoms into meso-aryl-corrole structure mainly from tri-fluorinated insertions. The 2D-QSAR models indicated two separated regions of higher and lower affinity for Mpro:C1–C17 based on dual electronic parameters (σI and σR), as well as one model was obtained with a correlation between the docking score value of Mpro:C2–C17 and the corresponding 13C nuclear magnetic resonance (NMR) chemical shifts of the sp2 carbon atoms (δC-1 and δC-2) of C2–C17. Overall, the fluorinated-meso-aryl-corrole derivatives showed favorable in silico parameters as potential synthetic compounds for future in vitro assays on the inhibition of SARS-CoV-2 replication.
Collapse
|
7
|
Martín V, Sanz-Novo M, León I, Redondo P, Largo A, Barrientos C. Computational study on the affinity of potential drugs to SARS-CoV-2 main protease. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:294005. [PMID: 35504274 DOI: 10.1088/1361-648x/ac6c6c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Herein, we report a computational investigation of the binding affinity of dexamethasone, betamethasone, chloroquine and hydroxychloroquine to SARS-CoV-2 main protease using molecular and quantum mechanics as well as molecular docking methodologies. We aim to provide information on the anti-COVID-19 mechanism of the abovementioned potential drugs against SARS-CoV-2 coronavirus. Hence, the 6w63 structure of the SARS-CoV-2 main protease was selected as potential target site for the docking analysis. The study includes an initial conformational analysis of dexamethasone, betamethasone, chloroquine and hydroxychloroquine. For the most stable conformers, a spectroscopic analysis has been carried out. In addition, global and local reactivity indexes have been calculated to predict the chemical reactivity of these molecules. The molecular docking results indicate that dexamethasone and betamethasone have a higher affinity than chloroquine and hydroxychloroquine for their theoretical 6w63 target. Additionally, dexamethasone and betamethasone show a hydrogen bond with the His41 residue of the 6w63 protein, while the interaction between chloroquine and hydroxychloroquine with this amino acid is weak. Thus, we confirm the importance of His41 amino acid as a target to inhibit the SARS-CoV-2 Mpro activity.
Collapse
Affiliation(s)
- Verónica Martín
- Departamento de Química Física y Química Inorgánica, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Miguel Sanz-Novo
- Departamento de Química Física y Química Inorgánica, Universidad de Valladolid, 47011 Valladolid, Spain
- Grupo de Espectroscopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopía y Bioespectroscopía, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Iker León
- Departamento de Química Física y Química Inorgánica, Universidad de Valladolid, 47011 Valladolid, Spain
- Grupo de Espectroscopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopía y Bioespectroscopía, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Pilar Redondo
- Departamento de Química Física y Química Inorgánica, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Antonio Largo
- Departamento de Química Física y Química Inorgánica, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Carmen Barrientos
- Departamento de Química Física y Química Inorgánica, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
8
|
Kumar A, Sharma M, Richardson CD, Kelvin DJ. Potential of Natural Alkaloids From Jadwar ( Delphinium denudatum) as Inhibitors Against Main Protease of COVID-19: A Molecular Modeling Approach. Front Mol Biosci 2022; 9:898874. [PMID: 35620478 PMCID: PMC9127362 DOI: 10.3389/fmolb.2022.898874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
The ongoing pandemic coronavirus disease (COVID-19) caused by a novel corona virus, namely, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has had a major impact on global public health. COVID-19 cases continue to increase across the globe with high mortality rates in immunocompromised patients. There is still a pressing demand for drug discovery and vaccine development against this highly contagious disease. To design and develop antiviral drugs against COVID-19, the main protease (Mpro) has emerged as one of the important drug targets. In this context, the present work explored Jadwar (Delphinium denudatum)-derived natural alkaloids as potential inhibitors against Mpro of SARS-CoV-2 by employing a combination of molecular docking and molecular dynamic simulation-based methods. Molecular docking and interaction profile analysis revealed strong binding on the Mpro functional domain with four natural alkaloids viz. panicutine (-7.4 kcal/mol), vilmorrianone (-7.0 kcal/mol), denudatine (-6.0 kcal/mol), and condelphine (-5.9 kcal/mol). The molecular docking results evaluated by using the MD simulations on 200 nanoseconds confirmed highly stable interactions of these compounds with the Mpro. Additionally, mechanics/generalized Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energy calculations also affirmed the docking results. Natural alkaloids explored in the present study possess the essential drug-likeness properties, namely, absorption, distribution, metabolism, and excretion (ADME), and are in accordance with Lipinski's rule of five. The results of this study suggest that these four bioactive molecules, namely, condelphine, denudatine, panicutine, and vilmorrianone, might be effective candidates against COVID-19 and can be further investigated using a number of experimental methods.
Collapse
Affiliation(s)
- Anuj Kumar
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Mansi Sharma
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Christopher D. Richardson
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - David J. Kelvin
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| |
Collapse
|
9
|
Caliskan UK, Karakus MM. Evaluation of botanicals as potential COVID-19 symptoms terminator. World J Gastroenterol 2021; 27:6551-6571. [PMID: 34754152 PMCID: PMC8554406 DOI: 10.3748/wjg.v27.i39.6551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Information about the coronavirus disease 2019 (COVID-19) pandemic is still evolving since its appearance in December 2019 and has affected the whole world. Particularly, a search for an effective and safe treatment for COVID-19 continues. Botanical mixtures contain secondary metabolites (such as flavonoids, phenolics, alkaloids, essential oils etc.) with many therapeutic effects. In this study, the use of herbal treatments against COVID-19 was evaluated. Medical synthetic drugs focus mainly on respiratory symptoms, however herbal therapy with plant extracts may be useful to relieve overall symptoms of COVID-19 due to the variety of bioactive ingredients. Since COVID-19 is a virus that affects the respiratory tract, the antiviral effects of botanicals/plants against respiratory viruses have been examined through clinical studies. Data about COVID-19 patients revealed that the virus not only affects the respiratory system but different organs including the gastrointestinal (GI) system. As GI symptoms seriously affect quality of life, herbal options that might eliminate these problems were also evaluated. Finally, computer modeling studies of plants and their active compounds on COVID-19 were included. In summary, herbal therapies were identified as potential options for both antiviral effects and control of COVID-19 symptoms. Further data will be needed to enlighten all aspects of COVID-19 pathogenesis, before determining the effects of plants on severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Ufuk Koca Caliskan
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| | - Methiye Mancak Karakus
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| |
Collapse
|
10
|
Kumar A, Mishra DC, Angadi UB, Yadav R, Rai A, Kumar D. Inhibition Potencies of Phytochemicals Derived from Sesame Against SARS-CoV-2 Main Protease: A Molecular Docking and Simulation Study. Front Chem 2021; 9:744376. [PMID: 34692642 PMCID: PMC8531729 DOI: 10.3389/fchem.2021.744376] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has now spread across the nations with high mortality rates and multifaceted impact on human life. The proper treatment methods to overcome this contagious disease are still limited. The main protease enzyme (Mpro, also called 3CLpro) is essential for viral replication and has been considered as one of the potent drug targets for treating COVID-19. In this study, virtual screening was performed to find out the molecular interactions between 36 natural compounds derived from sesame and the Mpro of COVID-19. Four natural metabolites, namely, sesamin, sesaminol, sesamolin, and sesamolinol have been ranked as the top interacting molecules to Mpro based on the affinity of molecular docking. Moreover, stability of these four sesame-specific natural compounds has also been evaluated using molecular dynamics (MD) simulations for 200 nanoseconds. The molecular dynamics simulations and free energy calculations revealed that these compounds have stable and favorable energies, causing strong binding with Mpro. These screened natural metabolites also meet the essential conditions for drug likeness such as absorption, distribution, metabolism, and excretion (ADME) properties as well as Lipinski's rule of five. Our finding suggests that these screened natural compounds may be evolved as promising therapeutics against COVID-19.
Collapse
Affiliation(s)
- Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dwijesh Chandra Mishra
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa Basavanneppa Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rashmi Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
11
|
Vougogiannopoulou K, Corona A, Tramontano E, Alexis MN, Skaltsounis AL. Natural and Nature-Derived Products Targeting Human Coronaviruses. Molecules 2021; 26:448. [PMID: 33467029 PMCID: PMC7831024 DOI: 10.3390/molecules26020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state of emergency that needs to be addressed with intensive research for the discovery of pharmacological agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from plants of the global biodiversity, including extracts, compounds and categories of compounds with activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs, is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function, and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a critical perspective.
Collapse
Affiliation(s)
- Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Biomedical Section, Laboratory of Molecular Virology, E block, Cittadella Universitaria di Monserrato, SS55409042 Monserrato, Italy; (A.C.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Biomedical Section, Laboratory of Molecular Virology, E block, Cittadella Universitaria di Monserrato, SS55409042 Monserrato, Italy; (A.C.); (E.T.)
| | - Michael N. Alexis
- Molecular Endocrinology Team, Inst of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Ave., 11635 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|