1
|
Qian L, Lu X, Haris P, Zhu J, Li S, Yang Y. Enhancing clinical trial outcome prediction with artificial intelligence: a systematic review. Drug Discov Today 2025; 30:104332. [PMID: 40097090 DOI: 10.1016/j.drudis.2025.104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/04/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Clinical trials are pivotal in drug development yet fraught with uncertainties and resource-intensive demands. The application of AI models to forecast trial outcomes could mitigate failures and expedite the drug discovery process. This review discusses AI methodologies that impact clinical trial outcomes, focusing on clinical text embedding, trial multimodal learning, and prediction techniques, while addressing practical challenges and opportunities.
Collapse
Affiliation(s)
- Long Qian
- Faculty of Computing Engineering Media, De Montfort University, Leicester, UK
| | - Xin Lu
- Faculty of Computing Engineering Media, De Montfort University, Leicester, UK
| | - Parvez Haris
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| | | | - Shuo Li
- Faculty of Computing Engineering Media, De Montfort University, Leicester, UK
| | - Yingjie Yang
- Faculty of Computing Engineering Media, De Montfort University, Leicester, UK.
| |
Collapse
|
2
|
Khalili H, Wimmer MA. Towards Improved XAI-Based Epidemiological Research into the Next Potential Pandemic. Life (Basel) 2024; 14:783. [PMID: 39063538 PMCID: PMC11278356 DOI: 10.3390/life14070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
By applying AI techniques to a variety of pandemic-relevant data, artificial intelligence (AI) has substantially supported the control of the spread of the SARS-CoV-2 virus. Along with this, epidemiological machine learning studies of SARS-CoV-2 have been frequently published. While these models can be perceived as precise and policy-relevant to guide governments towards optimal containment policies, their black box nature can hamper building trust and relying confidently on the prescriptions proposed. This paper focuses on interpretable AI-based epidemiological models in the context of the recent SARS-CoV-2 pandemic. We systematically review existing studies, which jointly incorporate AI, SARS-CoV-2 epidemiology, and explainable AI approaches (XAI). First, we propose a conceptual framework by synthesizing the main methodological features of the existing AI pipelines of SARS-CoV-2. Upon the proposed conceptual framework and by analyzing the selected epidemiological studies, we reflect on current research gaps in epidemiological AI toolboxes and how to fill these gaps to generate enhanced policy support in the next potential pandemic.
Collapse
Affiliation(s)
- Hamed Khalili
- Research Group E-Government, Faculty of Computer Science, University of Koblenz, D-56070 Koblenz, Germany;
| | | |
Collapse
|
3
|
Azizi M, Jamali AA, Spiteri RJ. Identifying X (Formerly Twitter) Posts Relevant to Dementia and COVID-19: Machine Learning Approach. JMIR Form Res 2024; 8:e49562. [PMID: 38833288 PMCID: PMC11185906 DOI: 10.2196/49562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND During the pandemic, patients with dementia were identified as a vulnerable population. X (formerly Twitter) became an important source of information for people seeking updates on COVID-19, and, therefore, identifying posts (formerly tweets) relevant to dementia can be an important support for patients with dementia and their caregivers. However, mining and coding relevant posts can be daunting due to the sheer volume and high percentage of irrelevant posts. OBJECTIVE The objective of this study was to automate the identification of posts relevant to dementia and COVID-19 using natural language processing and machine learning (ML) algorithms. METHODS We used a combination of natural language processing and ML algorithms with manually annotated posts to identify posts relevant to dementia and COVID-19. We used 3 data sets containing more than 100,000 posts and assessed the capability of various algorithms in correctly identifying relevant posts. RESULTS Our results showed that (pretrained) transfer learning algorithms outperformed traditional ML algorithms in identifying posts relevant to dementia and COVID-19. Among the algorithms tested, the transfer learning algorithm A Lite Bidirectional Encoder Representations from Transformers (ALBERT) achieved an accuracy of 82.92% and an area under the curve of 83.53%. ALBERT substantially outperformed the other algorithms tested, further emphasizing the superior performance of transfer learning algorithms in the classification of posts. CONCLUSIONS Transfer learning algorithms such as ALBERT are highly effective in identifying topic-specific posts, even when trained with limited or adjacent data, highlighting their superiority over other ML algorithms and applicability to other studies involving analysis of social media posts. Such an automated approach reduces the workload of manual coding of posts and facilitates their analysis for researchers and policy makers to support patients with dementia and their caregivers and other vulnerable populations.
Collapse
Affiliation(s)
- Mehrnoosh Azizi
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ali Akbar Jamali
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raymond J Spiteri
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Data-Driven Analytics Leveraging Artificial Intelligence in the Era of COVID-19: An Insightful Review of Recent Developments. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper presents the role of artificial intelligence (AI) and other latest technologies that were employed to fight the recent pandemic (i.e., novel coronavirus disease-2019 (COVID-19)). These technologies assisted the early detection/diagnosis, trends analysis, intervention planning, healthcare burden forecasting, comorbidity analysis, and mitigation and control, to name a few. The key-enablers of these technologies was data that was obtained from heterogeneous sources (i.e., social networks (SN), internet of (medical) things (IoT/IoMT), cellular networks, transport usage, epidemiological investigations, and other digital/sensing platforms). To this end, we provide an insightful overview of the role of data-driven analytics leveraging AI in the era of COVID-19. Specifically, we discuss major services that AI can provide in the context of COVID-19 pandemic based on six grounds, (i) AI role in seven different epidemic containment strategies (a.k.a non-pharmaceutical interventions (NPIs)), (ii) AI role in data life cycle phases employed to control pandemic via digital solutions, (iii) AI role in performing analytics on heterogeneous types of data stemming from the COVID-19 pandemic, (iv) AI role in the healthcare sector in the context of COVID-19 pandemic, (v) general-purpose applications of AI in COVID-19 era, and (vi) AI role in drug design and repurposing (e.g., iteratively aligning protein spikes and applying three/four-fold symmetry to yield a low-resolution candidate template) against COVID-19. Further, we discuss the challenges involved in applying AI to the available data and privacy issues that can arise from personal data transitioning into cyberspace. We also provide a concise overview of other latest technologies that were increasingly applied to limit the spread of the ongoing pandemic. Finally, we discuss the avenues of future research in the respective area. This insightful review aims to highlight existing AI-based technological developments and future research dynamics in this area.
Collapse
|
5
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
6
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: or
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
7
|
Applications of Machine Learning and High-Performance Computing in the Era of COVID-19. APPLIED SYSTEM INNOVATION 2021. [DOI: 10.3390/asi4030040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the ongoing pandemic of the novel coronavirus disease 2019 (COVID-19), latest technologies such as artificial intelligence (AI), blockchain, learning paradigms (machine, deep, smart, few short, extreme learning, etc.), high-performance computing (HPC), Internet of Medical Things (IoMT), and Industry 4.0 have played a vital role. These technologies helped to contain the disease’s spread by predicting contaminated people/places, as well as forecasting future trends. In this article, we provide insights into the applications of machine learning (ML) and high-performance computing (HPC) in the era of COVID-19. We discuss the person-specific data that are being collected to lower the COVID-19 spread and highlight the remarkable opportunities it provides for knowledge extraction leveraging low-cost ML and HPC techniques. We demonstrate the role of ML and HPC in the context of the COVID-19 era with the successful implementation or proposition in three contexts: (i) ML and HPC use in the data life cycle, (ii) ML and HPC use in analytics on COVID-19 data, and (iii) the general-purpose applications of both techniques in COVID-19’s arena. In addition, we discuss the privacy and security issues and architecture of the prototype system to demonstrate the proposed research. Finally, we discuss the challenges of the available data and highlight the issues that hinder the applicability of ML and HPC solutions on it.
Collapse
|
8
|
Singh R, Gautam A, Chandel S, Sharma V, Ghosh A, Dey D, Roy S, Ravichandiran V, Ghosh D. Computational screening of FDA approved drugs of fungal origin that may interfere with SARS-CoV-2 spike protein activation, viral RNA replication, and post-translational modification: a multiple target approach. In Silico Pharmacol 2021; 9:27. [PMID: 33842191 PMCID: PMC8019482 DOI: 10.1007/s40203-021-00089-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Coronavirus spread is an emergency reported globally, and a specific treatment strategy for this significant health issue is not yet identified. COVID-19 is a highly contagious disease and needs to be controlled promptly as millions of deaths have been reported. Due to the absence of proficient restorative alternatives and preliminary clinical restrictions, FDA-approved medications can be a decent alternative to deal with the coronavirus malady (COVID-19). The present study aims to meet the imperative necessity of effective COVID-19 drug treatment with a computational multi-target drug repurposing approach. This study focused on screening the FDA-approved drugs derived from the fungal source and its derivatives against the SARS-CoV-2 targets. All the selected drugs showed good binding affinity towards these targets, and out of them, bromocriptine was found to be the best candidate after the screening on the COVID-19 targets. Further, bromocriptine is analyzed by molecular simulation and MM-PBSA study. These studies suggested that bromocriptine can be the best candidate for TMPRSS2, Main protease, and RdRp protein. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00089-8.
Collapse
Affiliation(s)
- Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Plank Institute for Development Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Shivani Chandel
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - Vipul Sharma
- Indo Soviet Friendship College of Pharmacy, G.T. Road (NH-95), Ghal Kalan, Moga, Punjab 142001 India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata, 700009 India
| | - Dhritiman Dey
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| |
Collapse
|