1
|
Hussain S, Ahmad S, Wasid M. Artificial intelligence-driven intelligent learning models for identification and prediction of cardioneurological disorders: A comprehensive study. Comput Biol Med 2025; 184:109342. [PMID: 39571276 DOI: 10.1016/j.compbiomed.2024.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 12/22/2024]
Abstract
The integration of Artificial Intelligence (AI) and Intelligent Learning Models (ILMs) in healthcare has transformed the field, offering precise diagnostics, remote monitoring, personalized treatment, and more. Cardioneurological disorders (CD), affecting the cardiovascular and neurological systems, present significant diagnostic and management challenges. Traditional testing methods often lack sensitivity and specificity, leading to delayed or inaccurate diagnoses. AI-driven ILMs trained on large datasets offer promise for accurate identification and prediction of CD by analyzing complex data patterns. However, there is a lack of comprehensive studies reviewing AI applications for the diagnosis of CD and inter related disorders. This paper comprehensively reviews existing integrated solutions involving AI and ILMs in CD, examining their clinical manifestations, epidemiology, diagnostic challenges, and therapeutic considerations. The study examines recent research on CD, reviews AI-driven models' landscape, evaluates existing models, addresses practical considerations, and outlines future research directions. Through this work, we aim to provide insights into the transformative potential of AI-driven ILMs in improving clinical practice and patient outcomes for CD.
Collapse
Affiliation(s)
- Shahadat Hussain
- School of Computer Science Engineering & Technology, Bennett University, Greater Noida 201310, India
| | - Shahnawaz Ahmad
- School of Computer Science Engineering & Technology, Bennett University, Greater Noida 201310, India
| | - Mohammed Wasid
- School of Computer Science Engineering & Technology, Bennett University, Greater Noida 201310, India.
| |
Collapse
|
2
|
Gharaibeh NY, De Fazio R, Al-Naami B, Al-Hinnawi AR, Visconti P. Automated Lung Cancer Diagnosis Applying Butterworth Filtering, Bi-Level Feature Extraction, and Sparce Convolutional Neural Network to Luna 16 CT Images. J Imaging 2024; 10:168. [PMID: 39057739 PMCID: PMC11277772 DOI: 10.3390/jimaging10070168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Accurate prognosis and diagnosis are crucial for selecting and planning lung cancer treatments. As a result of the rapid development of medical imaging technology, the use of computed tomography (CT) scans in pathology is becoming standard practice. An intricate interplay of requirements and obstacles characterizes computer-assisted diagnosis, which relies on the precise and effective analysis of pathology images. In recent years, pathology image analysis tasks such as tumor region identification, prognosis prediction, tumor microenvironment characterization, and metastasis detection have witnessed the considerable potential of artificial intelligence, especially deep learning techniques. In this context, an artificial intelligence (AI)-based methodology for lung cancer diagnosis is proposed in this research work. As a first processing step, filtering using the Butterworth smooth filter algorithm was applied to the input images from the LUNA 16 lung cancer dataset to remove noise without significantly degrading the image quality. Next, we performed the bi-level feature selection step using the Chaotic Crow Search Algorithm and Random Forest (CCSA-RF) approach to select features such as diameter, margin, spiculation, lobulation, subtlety, and malignancy. Next, the Feature Extraction step was performed using the Multi-space Image Reconstruction (MIR) method with Grey Level Co-occurrence Matrix (GLCM). Next, the Lung Tumor Severity Classification (LTSC) was implemented by using the Sparse Convolutional Neural Network (SCNN) approach with a Probabilistic Neural Network (PNN). The developed method can detect benign, normal, and malignant lung cancer images using the PNN algorithm, which reduces complexity and efficiently provides classification results. Performance parameters, namely accuracy, precision, F-score, sensitivity, and specificity, were determined to evaluate the effectiveness of the implemented hybrid method and compare it with other solutions already present in the literature.
Collapse
Affiliation(s)
- Nasr Y. Gharaibeh
- Department of Electrical Engineering, Al-Balqa Applied University, Salt 21163, Jordan;
| | - Roberto De Fazio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy;
| | - Bassam Al-Naami
- Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan;
| | - Abdel-Razzak Al-Hinnawi
- Department of Medical Imaging, Faculty of Allied Medical Sciences, Isra University, Amman 11622, Jordan;
| | - Paolo Visconti
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
3
|
De Fazio R, Spongano L, De Vittorio M, Patrono L, Visconti P. Machine Learning Algorithms for Processing and Classifying Unsegmented Phonocardiographic Signals: An Efficient Edge Computing Solution Suitable for Wearable Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:3853. [PMID: 38931636 PMCID: PMC11207414 DOI: 10.3390/s24123853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The phonocardiogram (PCG) can be used as an affordable way to monitor heart conditions. This study proposes the training and testing of several classifiers based on SVMs (support vector machines), k-NN (k-Nearest Neighbor), and NNs (neural networks) to perform binary ("Normal"/"Pathologic") and multiclass ("Normal", "CAD" (coronary artery disease), "MVP" (mitral valve prolapse), and "Benign" (benign murmurs)) classification of PCG signals, without heart sound segmentation algorithms. Two datasets of 482 and 826 PCG signals from the Physionet/CinC 2016 dataset are used to train the binary and multiclass classifiers, respectively. Each PCG signal is pre-processed, with spike removal, denoising, filtering, and normalization; afterward, it is divided into 5 s frames with a 1 s shift. Subsequently, a feature set is extracted from each frame to train and test the binary and multiclass classifiers. Concerning the binary classification, the trained classifiers yielded accuracies ranging from 92.4 to 98.7% on the test set, with memory occupations from 92.7 kB to 11.1 MB. Regarding the multiclass classification, the trained classifiers achieved accuracies spanning from 95.3 to 98.6% on the test set, occupying a memory portion from 233 kB to 14.1 MB. The NNs trained and tested in this work offer the best trade-off between performance and memory occupation, whereas the trained k-NN models obtained the best performance at the cost of large memory occupation (up to 14.1 MB). The classifiers' performance slightly depends on the signal quality, since a denoising step is performed during pre-processing. To this end, the signal-to-noise ratio (SNR) was acquired before and after the denoising, indicating an improvement between 15 and 30 dB. The trained and tested models occupy relatively little memory, enabling their implementation in resource-limited systems.
Collapse
Affiliation(s)
- Roberto De Fazio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
| | - Lorenzo Spongano
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy
| | - Luigi Patrono
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
| | - Paolo Visconti
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy
| |
Collapse
|
4
|
Duangburong S, Phruksaphanrat B, Muengtaweepongsa S. Comparison of ANN and ANFIS Models for AF Diagnosis Using RR Irregularities. APPLIED SCIENCES 2023; 13:1712. [DOI: 10.3390/app13031712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Classification of normal sinus rhythm (NSR), paroxysmal atrial fibrillation (PAF), and persistent atrial fibrillation (AF) is crucial in order to diagnose and effectively plan treatment for patients. Current classification models were primarily developed by electrocardiogram (ECG) signal databases, which may be unsuitable for local patients. Therefore, this research collected ECG signals from 60 local Thai patients (age 52.53 ± 23.92) to create a classification model. The coefficient of variance (CV), the median absolute deviation (MAD), and the root mean square of the successive differences (RMSSD) are ordinary feature variables of RR irregularities used by existing models. The square of average variation (SAV) is a newly proposed feature that extracts from the irregularity of RR intervals. All variables were found to be statistically different using ANOVA tests and Tukey’s method with a p-value less than 0.05. The methods of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were also tested and compared to find the best classification model. Finally, SAV showed the best performance using the ANFIS model with trapezoidal membership function, having the highest system accuracy (ACC) at 89.33%, sensitivity (SE), specificity (SP), and positive predictivity (PPR) for NSR at 100.00%, 94.00%, and 89.29%, PAF at 88.00%, 90.57%, and 81.48%, and AF at 80.00%, 96.00%, and 90.91%, respectively.
Collapse
Affiliation(s)
- Suttirak Duangburong
- Research Unit in Industrial Statistics and Operational Research, Industrial Engineering Department, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Pathum Thani 12121, Thailand
| | - Busaba Phruksaphanrat
- Research Unit in Industrial Statistics and Operational Research, Industrial Engineering Department, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Pathum Thani 12121, Thailand
| | - Sombat Muengtaweepongsa
- Center of Excellence in Stroke, Faculty of Medicine, Thammasat University, Pathum Thani 10121, Thailand
| |
Collapse
|
5
|
Assessment of Multi-Layer Perceptron Neural Network for Pulmonary Function Test’s Diagnosis Using ATS and ERS Respiratory Standard Parameters. COMPUTERS 2022. [DOI: 10.3390/computers11090130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the research work is to investigate the operability of the entire 23 pulmonary function parameters, which are stipulated by the American Thoracic Society (ATS) and the European Respiratory Society (ERS), to design a medical decision support system capable of classifying the pulmonary function tests into normal, obstructive, restrictive, or mixed cases. The 23 respiratory parameters specified by the ATS and the ERS guidelines, obtained from the Pulmonary Function Test (PFT) device, were employed as input features to a Multi-Layer Perceptron (MLP) neural network. Thirteen possible MLP Back Propagation (BP) algorithms were assessed. Three different categories of respiratory diseases were evaluated, namely obstructive, restrictive, and mixed conditions. The framework was applied on 201 PFT examinations: 103 normal and 98 abnormal cases. The PFT decision support system’s outcomes were compared with both the clinical truth (physician decision) and the PFT built-in diagnostic software. It yielded 92–99% and 87–92% accuracies on the training and the test sets, respectively. An 88–94% area under the receiver operating characteristic curve (ROC) was recorded on the test set. The system exceeded the performance of the PFT machine by 9%. All 23 ATS\ERS standard PFT parameters can be used as inputs to design a PFT decision support system, yielding a favorable performance compared with the literature and the PFT machine’s diagnosis program.
Collapse
|