Xiong H, Peng S, Zhang B. Cell-shape assemblage and nanostructure of akaganéite bioformed in FeCl
2 solutions.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022;
29:75566-75574. [PMID:
35657552 DOI:
10.1007/s11356-022-21084-2]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Akaganéite (β-FeOOH) with a tunnel structure typically occupied by chloride can undergo anion-exchange reactions in aqueous solutions for pollutant removal. In this work, we studied bioformation of akaganéite in FeCl2 solutions with Acidithiobacillus ferrooxidans cells at pH 2.9, during 36-h incubation. The obtained products were analyzed and characterized by XRD, FTIR, EDS, FETEM, and HRTEM. Results showed that in acidic media with pH 2.9, the cells facilitated ferrous biooxidation and ferric precipitation. The resulting ferric precipitates were identified as polycrystalline akaganéite powders and had a morphology of nanospindles with a length of less 100 nm. The correlatively chemical formula for akaganéite collected at 1 h was reckoned as Fe8O8(OH)6.71(Cl)1.29 with 6.6% Cl. It was observed that ferric precipitates along exterior structures of cells or their extruded organic polymers grew and assembled into cellular shape. The evolved cell-shape akaganéite assemblages were twice of cells (about 2 µm) in size. These results could contribute to understanding of laboratorial bioformation of akaganéite and its biomineralization in acidic environments and promoting its practical applications.
Collapse