1
|
Alem AF, Worku AK, Ayele DW, Habtu NG, Ambaw MD, Yemata TA. Enhancing pseudocapacitive properties of cobalt oxide hierarchical nanostructures via iron doping. Heliyon 2023; 9:e13817. [PMID: 36873468 PMCID: PMC9976307 DOI: 10.1016/j.heliyon.2023.e13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Through co-precipitation and post-heat processing, nanostructured Fe-doped Co3O4 nanoparticles (NPs) were developed. Using the SEM, XRD, BET, FTIR, TGA/DTA, UV-Vis, and techniques were examined. The XRD analysis presented that Co3O4 and Co3O4 nanoparticles that had been doped with 0.25 M Fe formed single cubic phase Co3O4 NPs with average crystallite sizes of 19.37 nm and 14.09 nm, respectively. The as prepared NPs have porous architectures via SEM analyses. The BET surface areas of Co3O4 and 0.25 M Fe-doped Co3O4 NPs were 53.06 m2/g and 351.56 m2/g, respectively. Co3O4 NPs have a band gap energy of 2.96 eV and an extra sub-band gap energy of 1.95 eV. Fe-doped Co3O4 NPs were also found to have band gap energies between 2.54 and 1.46 eV. FTIR spectroscopy was used to determine whether M-O bonds (M = Co, Fe) were present. The doping impact of iron results in the doped Co3O4 samples having better thermal characteristics. The highest specific capacitance was achieved using 0.25 M Fe-doped Co3O4 NPs at 5 mV/s, which corresponding to 588.5 F/g via CV analysis. Additionally, 0.25 M Fe-doped Co3O4 NPs had energy and power densities of 9.17 W h/kg and 472.1 W/kg, correspondingly.
Collapse
Affiliation(s)
- Asab Fetene Alem
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
| | - Ababay Ketema Worku
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
- Corresponding author.
| | - Delele Worku Ayele
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
- Corresponding author. Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
| | - Nigus Gabbiye Habtu
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology-Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
| | - Mehary Dagnew Ambaw
- Department of Industrial Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Temesgen Atnafu Yemata
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology-Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
- Corresponding author.
| |
Collapse
|
3
|
Arandiyan H, S Mofarah S, Sorrell CC, Doustkhah E, Sajjadi B, Hao D, Wang Y, Sun H, Ni BJ, Rezaei M, Shao Z, Maschmeyer T. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chem Soc Rev 2021; 50:10116-10211. [PMID: 34542117 DOI: 10.1039/d0cs00639d] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxide perovskites have emerged as an important class of materials with important applications in many technological areas, particularly thermocatalysis, electrocatalysis, photocatalysis, and energy storage. However, their implementation faces numerous challenges that are familiar to the chemist and materials scientist. The present work surveys the state-of-the-art by integrating these two viewpoints, focusing on the critical role that defect engineering plays in the design, fabrication, modification, and application of these materials. An extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria. The aim of this approach is to elucidate how these issues can be integrated in order to shed light on the interpretation of the data and what trajectories are suggested by them. This critical examination has revealed a number of areas in which the review can provide a greater understanding. These include considerations of (1) the nature and formation of solid solutions, (2) site filling and stoichiometry, (3) the rationale for the design of defective oxide perovskites, and (4) the complex mechanisms of charge compensation and charge transfer. The review concludes with some proposed strategies to address the challenges in the future development of oxide perovskites and their applications.
Collapse
Affiliation(s)
- Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. .,Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia.
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Esmail Doustkhah
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Baharak Sajjadi
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Derek Hao
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuan Wang
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia. .,School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hongyu Sun
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mehran Rezaei
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. NANOMATERIALS 2021; 11:nano11051248. [PMID: 34068548 PMCID: PMC8151924 DOI: 10.3390/nano11051248] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023]
Abstract
In the past decades, the energy consumption of nonrenewable fossil fuels has been increasing, which severely threatens human life. Thus, it is very urgent to develop renewable and reliable energy storage devices with features of environmental harmlessness and low cost. High power density, excellent cycle stability, and a fast charge/discharge process make supercapacitors a promising energy device. However, the energy density of supercapacitors is still less than that of ordinary batteries. As is known to all, the electrochemical performance of supercapacitors is largely dependent on electrode materials. In this review, we firstly introduced six typical transition metal oxides (TMOs) for supercapacitor electrodes, including RuO2, Co3O4, MnO2, ZnO, XCo2O4 (X = Mn, Cu, Ni), and AMoO4 (A = Co, Mn, Ni, Zn). Secondly, the problems of these TMOs in practical application are presented and the corresponding feasible solutions are clarified. Then, we summarize the latest developments of the six TMOs for supercapacitor electrodes. Finally, we discuss the developing trend of supercapacitors and give some recommendations for the future of supercapacitors.
Collapse
|