1
|
Kodikara S, Gyawali P, Gleeson JT, Jákli A, Sprunt S, Balci H. Impact of Divalent Cations on In-Layer Positional Order of DNA-Based Liquid Crystals: Implications for DNA Condensation. Biomacromolecules 2024; 25:1009-1017. [PMID: 38166360 PMCID: PMC10866144 DOI: 10.1021/acs.biomac.3c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024]
Abstract
The layered liquid crystalline phases formed by DNA molecules, which include rigid and flexible segments ("gapped DNA"), enable the study of both end-to-end stacking and side-to-side (helix-to-helix) lateral interactions, forming a model system to study such interactions at physiologically relevant DNA and ion concentrations. The observed layer structure exhibits long-range interlayer and in-layer positional correlations. In particular, the in-layer order has implications for DNA condensation, as it reflects whether these normally repulsive interactions become attractive under certain ionic conditions. Using synchrotron small-angle X-ray scattering measurements, we investigate the impact of divalent Mg2+ cations (in addition to a constant 150 mM Na+) on the stability of the inter- and in-layer DNA ordering as a function of temperature between 5 and 65 °C. DNA constructs with different terminal base pairings were created to mediate the strength of the attractive end-to-end stacking interactions between the blunt ends of the gapped DNA constructs. We demonstrate that the stabilities at a fixed DNA concentration of both interlayer and in-layer order are significantly enhanced even at a few mM Mg2+ concentration. The stabilities are even higher at 30 mM Mg2+; however, a marked decrease is observed at 100 mM Mg2+, suggesting a change in the nature of side-by-side interactions within this Mg2+ concentration range. We discuss the implications of these results in terms of counterion-mediated DNA-DNA attraction and DNA condensation.
Collapse
Affiliation(s)
- Sineth
G. Kodikara
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Prabesh Gyawali
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - James T. Gleeson
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Antal Jákli
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Samuel Sprunt
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Hamza Balci
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
2
|
de With G. Melting Is Well-Known, but Is It Also Well-Understood? Chem Rev 2023; 123:13713-13795. [PMID: 37963286 PMCID: PMC10722469 DOI: 10.1021/acs.chemrev.3c00489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Contrary to continuous phase transitions, where renormalization group theory provides a general framework, for discontinuous phase transitions such a framework seems to be absent. Although the thermodynamics of the latter type of transitions is well-known and requires input from two phases, for melting a variety of one-phase theories and models based on solids has been proposed, as a generally accepted theory for liquids is (yet) missing. Each theory or model deals with a specific mechanism using typically one of the various defects (vacancies, interstitials, dislocations, interstitialcies) present in solids. Furthermore, recognizing that surfaces are often present, one distinguishes between mechanical or bulk melting and thermodynamic or surface-mediated melting. After providing the necessary preliminaries, we discuss both types of melting in relation to the various defects. Thereafter we deal with the effect of pressure on the melting process, followed by a discussion along the line of type of materials. Subsequently, some other aspects and approaches are dealt with. An attempt to put melting in perspective concludes this review.
Collapse
Affiliation(s)
- Gijsbertus de With
- Laboratory of Physical Chemistry, Eindhoven University of Technology, Het Kranenveld 14, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Kodikara S, Gyawali P, Gleeson JT, Jakli A, Sprunt S, Balci H. Stability of End-to-End Base Stacking Interactions in Highly Concentrated DNA Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4838-4846. [PMID: 36952670 PMCID: PMC10078606 DOI: 10.1021/acs.langmuir.3c00318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Positionally ordered bilayer liquid crystalline nanostructures formed by gapped DNA (GDNA) constructs provide a practical window into DNA-DNA interactions at physiologically relevant DNA concentrations; concentrations several orders of magnitude greater than those in commonly used biophysical assays. The bilayer structure of these states of matter is stabilized by end-to-end base stacking interactions; moreover, such interactions also promote in-plane positional ordering of duplexes that are separated from each other by less than twice the duplex diameter. The end-to-end stacked as well as in-plane ordered duplexes exhibit distinct signatures when studied via small-angle X-ray scattering (SAXS). This enables analysis of the thermal stability of both the end-to-end and side-by-side interactions. We performed synchrotron SAXS experiments over a temperature range of 5-65 °C on GDNA constructs that differ only by the terminal base-pairs at the blunt duplex ends, resulting in identical side-by-side interactions, while end-to-end base stacking interactions are varied. Our key finding is that bilayers formed by constructs with GC termination transition into the monolayer state at temperatures as much as 30 °C higher than for those with AT termination, while mixed (AT/GC) terminations have intermediate stability. By modeling the bilayer melting in terms of a temperature-dependent reduction in the average fraction of end-to-end paired duplexes, we estimate the stacking free energies in DNA solutions of physiologically relevant concentrations. The free-energies thereby determined are generally smaller than those reported in single-molecule studies, which might reflect the elevated DNA concentrations in our studies.
Collapse
Affiliation(s)
- Sineth
G. Kodikara
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Prabesh Gyawali
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - James T. Gleeson
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Antal Jakli
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Advanced
Materials and Liquid Crystals Institute, Kent State University, Kent, Ohio 44242, United States
| | - Samuel Sprunt
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Advanced
Materials and Liquid Crystals Institute, Kent State University, Kent, Ohio 44242, United States
| | - Hamza Balci
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
4
|
Thompson S, Sugimura-Komabayashi E, Komabayashi T, McGuire C, Breton H, Suehiro S, Ohishi Y. High-pressure melting experiments of Fe 3S and a thermodynamic model of the Fe-S liquids for the Earth's core. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:394003. [PMID: 35853447 DOI: 10.1088/1361-648x/ac8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Melting experiments on Fe3S were conducted to 75 GPa and 2800 K in laser-heated and internally resistive-heated diamond anvil cells within-situx-ray diffraction and/or post-mortem textural observation. From the constrained melting curve, we assessed the thermal equation of state for Fe3S liquid. Then we constructed a thermodynamic model of melting of the system Fe-Fe3S including the eutectic relation under high pressures based on our new experimental data. The mixing properties of Fe-S liquids under high pressures were evaluated in order to account for existing experimental data on eutectic temperature. The results demonstrate that the mixing of Fe and S liquids are nonideal at any core pressure. The calculated sulphur content in eutectic point decreases with increasing pressure to 120 GPa and is fairly constant of 8 wt% at greater pressures. From the Gibbs free energy, we derived the parameters to calculate the crystallising point of an Fe-S core and its isentrope, and then we calculated the density and the longitudinal seismic wave velocity (Vp) of these liquids along each isentrope. While Fe3S liquid can account for the seismologically constrained density andVpprofiles over the outer core, the density of the precipitating phase is too low for the inner core. On the other hand, a hypothetical Fe-S liquid core with a bulk composition on the Fe-rich side of the eutectic point cannot represent the density andVpprofiles of the Earth's outer core. Therefore, Earth's core cannot be approximated by the system Fe-S and it should include another light element.
Collapse
Affiliation(s)
- Samuel Thompson
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Emiko Sugimura-Komabayashi
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Tetsuya Komabayashi
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Chris McGuire
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Helene Breton
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Sho Suehiro
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Yasuo Ohishi
- SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
5
|
Structural Stability, Thermodynamic and Elastic Properties of Cubic Zr0.5Nb0.5 Alloy under High Pressure and High Temperature. CRYSTALS 2022. [DOI: 10.3390/cryst12050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Structural stability, sound velocities, elasticity, and thermodynamic properties of cubic Zr0.5Nb0.5 alloy have been investigated at high pressure and high temperature by first-principles density functional calculations combined with the quasi-harmonic Debye model. A pronounced pressure-induced shear wave velocity stiffening in Zr0.5Nb0.5 alloy is observed at pressures above ~11 GPa, owing to its structural instability under high pressure, whose anomalous behavior is also observed in the end members of Zr-Nb alloys for Zr at ~13 GPa and for Nb at ~6 GPa upon compression, respectively. In addition, high-pressure elasticity and elastic-correlated properties of cubic Zr0.5Nb0.5 are reported, as compared with previous studies on Zr-Nb alloys with different compositions. A comprehensive study of the thermodynamic properties of cubic Zr0.5Nb0.5, such as heat capacity (Cv), thermal expansion coefficients (α), and Debye temperature (ΘD), are also predicted at pressures and temperatures up to 30 GPa and 1500 K using the quasi-harmonic Debye model.
Collapse
|
6
|
Anzellini S, Errandonea D, Burakovsky L, Proctor JE, Turnbull R, Beavers CM. Characterization of the high-pressure and high-temperature phase diagram and equation of state of chromium. Sci Rep 2022; 12:6727. [PMID: 35468934 PMCID: PMC9038929 DOI: 10.1038/s41598-022-10523-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
The high-pressure and high-temperature phase diagram of chromium has been investigated both experimentally (in situ), using a laser-heated diamond-anvil cell technique coupled with synchrotron powder X-ray diffraction, and theoretically, using ab initio density-functional theory simulations. In the pressure-temperature range covered experimentally (up to 90 GPa and 4500 K, respectively) only the solid body-centred-cubic and liquid phases of chromium have been observed. Experiments and computer calculations give melting curves in agreement with each other that can both be described by the Simon-Glatzel equation [Formula: see text]. In addition, a quasi-hydrostatic equation of state at ambient temperature has been experimentally characterized up to 131 GPa and compared with the present simulations. Both methods give very similar third-order Birch-Murnaghan equations of state with bulk moduli of 182-185 GPa and respective pressure derivatives of 4.74-5.15. According to the present calculations, the obtained melting curve and equation of state are valid up to at least 815 GPa, at which pressure the melting temperature is 9310 K. Finally, from the obtained results, it was possible to determine a thermal equation of state of chromium valid up to 65 GPa and 2100 K.
Collapse
Affiliation(s)
- Simone Anzellini
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Diamond House, Didcot, OX11 0DE, UK.
| | - Daniel Errandonea
- Departamento de Física Aplicada-Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Leonid Burakovsky
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - John E Proctor
- Materials and Physics Research Group, School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK
| | - Robin Turnbull
- Departamento de Física Aplicada-Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Christine M Beavers
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Diamond House, Didcot, OX11 0DE, UK
| |
Collapse
|