1
|
De’Ath C, Oliva MF, Moulin M, Blakeley MP, Haertlein M, Mitchell EP, Gavira JA, Bowler MW, Forsyth VT. Counter-diffusion studies of human transthyretin: the growth of high-quality crystals for X-ray and neutron crystallography. J Appl Crystallogr 2025; 58:107-118. [PMID: 39917185 PMCID: PMC11798515 DOI: 10.1107/s1600576724011191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 02/09/2025] Open
Abstract
A crystallogenesis study of human transthyretin using the counter-diffusion method is described as an alternative to conventional convective vapour diffusion and batch approaches for protein crystallization. The X-ray diffraction results show systematic trends that exhibit unique patterns of crystallization and high crystal quality as well as a remarkable degree of coherence within extended crystal rods that wholly fill the capillaries used. Preliminary neutron diffraction data have been recorded from a number of these samples, validating the feasibility of this methodology for neutron crystallography.
Collapse
Affiliation(s)
- Clare De’Ath
- Life Sciences GroupInstitut Laue–Langevin71 Avenue des MartyrsGrenoble38042France
- European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble38042France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble38042, France
| | - Mizar F. Oliva
- Life Sciences GroupInstitut Laue–Langevin71 Avenue des MartyrsGrenoble38042France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble38042, France
| | - Martine Moulin
- Life Sciences GroupInstitut Laue–Langevin71 Avenue des MartyrsGrenoble38042France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble38042, France
| | - Matthew P. Blakeley
- Large Scale Structures GroupInstitut Laue–Langevin71 Avenue des MartyrsGrenoble38042France
| | - Michael Haertlein
- Life Sciences GroupInstitut Laue–Langevin71 Avenue des MartyrsGrenoble38042France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble38042, France
| | - Edward P. Mitchell
- European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble38042France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble38042, France
| | - José A. Gavira
- Laboratorio de Estudios CristalográficosInstituto Andaluz de Ciencias de la Tierra (CSIC)Av. Las Palmeras 4Granada18100Spain
| | - Matthew W. Bowler
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble38042, France
| | - V. Trevor Forsyth
- Medical FacultyLund UniversitySE-221 84LundSweden
- LINXS Institute for Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70Lund, Sweden
| |
Collapse
|
2
|
Contreras-Montoya R, Álvarez de Cienfuegos L, Gavira JA, Steed JW. Supramolecular gels: a versatile crystallization toolbox. Chem Soc Rev 2024; 53:10604-10619. [PMID: 39258871 DOI: 10.1039/d4cs00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Supramolecular gels are unique materials formed through the self-assembly of molecular building blocks, typically low molecular weight gelators (LMWGs), driven by non-covalent interactions. The process of crystallization within supramolecular gels has broadened the scope of the traditional gel-phase crystallization technique offering the possibility of obtaining crystals of higher quality and size. The broad structural diversity of LMWGs allows crystallization in multiple organic and aqueous solvents, favouring screening and optimization processes and the possibility to search for novel polymorphic forms. These supramolecular gels have been used for the crystallization of inorganic, small organic compounds of pharmaceutical interest, and proteins. Results have shown that these gels are not only able to produce crystals of high quality but also to influence polymorphism and physicochemical properties of the crystals, giving rise to crystals with potential new bio- and technological applications. Thus, understanding the principles of crystallization in supramolecular gels is essential for tailoring their properties and applications, ranging from drug delivery systems to composite crystals with tunable stability properties. In this review, we summarize the use of LMWG-based supramolecular gels as media to grow single crystals of a broad range of compounds.
Collapse
Affiliation(s)
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, E-18071, Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (IACT, CSIC), E-18100, Granada, Spain
| | | |
Collapse
|
3
|
Artusio F, Gavira JA, Pisano R. Self-Assembled Monolayers As a Tool to Investigate the Effect of Surface Chemistry on Protein Nucleation. CRYSTAL GROWTH & DESIGN 2023; 23:3195-3201. [PMID: 37159657 PMCID: PMC10162442 DOI: 10.1021/acs.cgd.2c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Indexed: 05/11/2023]
Abstract
Modified surfaces like siliconized glass are commonly used to support protein crystallization and facilitate obtaining crystals. Over the years, various surfaces have been proposed to decrease the energetic penalty required for consistent protein clustering, but scarce attention has been paid to the underlying mechanisms of interactions. Here, we propose self-assembled monolayers that are surfaces exposing fine-tuned moieties with a very regular topography and subnanometer roughness, as a tool to unveil the interaction between proteins and functionalized surfaces. We studied the crystallization of three model proteins having progressively narrower metastable zones, i.e., lysozyme, catalase, and proteinase K, on monolayers exposing thiol, methacrylate, and glycidyloxy groups. Thanks to comparable surface wettability, the induction or the inhibition of nucleation was readily attributed to the surface chemistry. For example, thiol groups strongly induced the nucleation of lysozyme thanks to electrostatic pairing, whereas methacrylate and glycidyloxy groups had an effect comparable to unfunctionalized glass. Overall, the action of surfaces led to differences in nucleation kinetics, crystal habit, and even crystal form. This approach can support the fundamental understanding of the interaction between protein macromolecules and specific chemical groups, which is crucial for many technological applications in the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Fiora Artusio
- Department
of Applied Science and Technology, Politecnico
di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy
- E-mail:
| | - José A. Gavira
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Roberto Pisano
- Department
of Applied Science and Technology, Politecnico
di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy
| |
Collapse
|
4
|
Liu H, Zhao Y, Sun J. Heterogeneous Nucleation in Protein Crystallization. Biomimetics (Basel) 2023; 8:68. [PMID: 36810399 PMCID: PMC9944892 DOI: 10.3390/biomimetics8010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Protein crystallization was first discovered in the nineteenth century and has been studied for nearly 200 years. Protein crystallization technology has recently been widely used in many fields, such as drug purification and protein structure analysis. The key to successful crystallization of proteins is the nucleation in the protein solution, which can be influenced by many factors, such as the precipitating agent, temperature, solution concentration, pH, etc., among which the role of the precipitating agent is extremely important. In this regard, we summarize the nucleation theory of protein crystallization, including classical nucleation theory, two-step nucleation theory, and heterogeneous nucleation theory. We focus on a variety of efficient heterogeneous nucleating agents and crystallization methods as well. The application of protein crystals in crystallography and biopharmaceutical fields is further discussed. Finally, the bottleneck of protein crystallization and the prospect of future technology development are reviewed.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yue Zhao
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Savchenko M, Hurtado M, Lopez-Lopez MT, Rus G, Álvarez de Cienfuegos L, Melchor J, Gavira JA. Lysozyme crystallization in hydrogel media under ultrasound irradiation. ULTRASONICS SONOCHEMISTRY 2022; 88:106096. [PMID: 35868210 PMCID: PMC9305616 DOI: 10.1016/j.ultsonch.2022.106096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 05/20/2023]
Abstract
Sonocrystallization implies the application of ultrasound radiation to control the nucleation and crystal growth depending on the actuation time and intensity. Its application allows to induce nucleation at lower supersaturations than required under standard conditions. Although extended in inorganic and organic crystallization, it has been scarcely explored in protein crystallization. Now, that industrial protein crystallization is gaining momentum, the interest on new ways to control protein nucleation and crystal growth is advancing. In this work we present the development of a novel ultrasound bioreactor to study its influence on protein crystallization in agarose gel. Gel media minimize convention currents and sedimentation, favoring a more homogeneous and stable conditions to study the effect of an externally generated low energy ultrasonic irradiation on protein crystallization avoiding other undesired effects such as temperature increase, introduction of surfaces which induce nucleation, destructive cavitation phenomena, etc. In-depth statistical analysis of the results has shown that the impact of ultrasound in gel media on crystal size populations are statistically significant and reproducible.
Collapse
Affiliation(s)
- Mariia Savchenko
- Universidad de Granada (UGR), Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Universidad de Granada (UGR), Departamento de Física Aplicada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-UGR), UEQ, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Manuel Hurtado
- Universidad de Granada (UGR), Departamento de Estadística e Investigación Operativa, Spain; Departamento de Mecánica de Estructuras e Ingeniería Hidráulica, Ultrasonics Lab TEP-959, Universidad de Granada, Spain; Unidad de Excelencia Modeling Nature MNAT, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada (UGR), Departamento de Física Aplicada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain
| | - Guillermo Rus
- Departamento de Mecánica de Estructuras e Ingeniería Hidráulica, Ultrasonics Lab TEP-959, Universidad de Granada, Spain; Unidad de Excelencia Modeling Nature MNAT, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad de Granada (UGR), Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain.
| | - Juan Melchor
- Universidad de Granada (UGR), Departamento de Estadística e Investigación Operativa, Spain; Unidad de Excelencia Modeling Nature MNAT, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain.
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-UGR), UEQ, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| |
Collapse
|
6
|
Alginate Nanohydrogels as a Biocompatible Platform for the Controlled Release of a Hydrophilic Herbicide. Processes (Basel) 2021. [DOI: 10.3390/pr9091641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The large-scale application of volatile and highly water-soluble pesticides to guarantee crop production can often have negative impacts on the environment. The main loss pathways are vapor drift, direct volatilization, or leaching of the active substances. Consequently, the pesticide can either accumulate and/or undergo physicochemical transformations in the soil. In this scenario, we synthesized alginate nanoparticles using an inverse miniemulsion template in sunflower oil and successfully used them to encapsulate a hydrophilic herbicide, i.e., dicamba. The formulation and process conditions were adjusted to obtain a unimodal size distribution of nanohydrogels of about 20 nm. The loading of the nanoparticles with dicamba did not affect the nanohydrogel size nor the particle stability. The release of dicamba from the nanohydrogels was also tested: the alginate nanoparticles promoted the sustained and prolonged release of dicamba over ten days, demonstrating the potential of our preparation method to be employed for field application. The encapsulation of hydrophilic compounds inside our alginate nanoparticles could enable a more efficient use of pesticides, minimizing losses and thus environmental spreading. The use of biocompatible materials (alginate, sunflower oil) also guarantees the absence of toxic additives in the formulation.
Collapse
|