1
|
Karawek A, Kittipoom K, Tansuthepverawongse L, Kitjanukit N, Neamsung W, Lertthanaphol N, Chanthara P, Ratchahat S, Phadungbut P, Kim-Lohsoontorn P, Srinives S. The Photocatalytic Conversion of Carbon Dioxide to Fuels Using Titanium Dioxide Nanosheets/Graphene Oxide Heterostructure as Photocatalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:320. [PMID: 36678074 PMCID: PMC9860753 DOI: 10.3390/nano13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Carbon dioxide (CO2) photoreduction to high-value products is a technique for dealing with CO2 emissions. The method involves the molecular transformation of CO2 to hydrocarbon and alcohol-type chemicals, such as methane and methanol, relying on a photocatalyst, such as titanium dioxide (TiO2). In this research, TiO2 nanosheets (TNS) were synthesized using a hydrothermal technique in the presence of a hydrofluoric acid (HF) soft template. The nanosheets were further composited with graphene oxide and doped with copper oxide in the hydrothermal process to create the copper-TiO2 nanosheets/graphene oxide (CTNSG). The CTNSG exhibited outstanding photoactivity in converting CO2 gas to methane and acetone. The production rate for methane and acetone was 12.09 and 0.75 µmol h-1 gcat-1 at 100% relative humidity, providing a total carbon consumption of 71.70 µmol gcat-1. The photoactivity of CTNSG was attributed to the heterostructure interior of the two two-dimensional nanostructures, the copper-TiO2 nanosheets and graphene oxide. The nanosheets-graphene oxide interfaces served as the n-p heterojunctions in holding active radicals for subsequent reactions. The heterostructure also directed the charge transfer, which promoted electron-hole separation in the photocatalyst.
Collapse
Affiliation(s)
- Apisit Karawek
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kittipad Kittipoom
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Labhassiree Tansuthepverawongse
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Nutkamol Kitjanukit
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wannisa Neamsung
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Napat Lertthanaphol
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Prowpatchara Chanthara
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Poomiwat Phadungbut
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Pattaraporn Kim-Lohsoontorn
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sira Srinives
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|