1
|
Nacys A, Simkunaitė D, Balciunaite A, Zabielaite A, Upskuviene D, Levinas R, Jasulaitiene V, Kovalevskij V, Simkunaite-Stanyniene B, Tamasauskaite-Tamasiunaite L, Norkus E. Pt-Coated Ni Layer Supported on Ni Foam for Enhanced Electro-Oxidation of Formic Acid. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6427. [PMID: 37834564 PMCID: PMC10573893 DOI: 10.3390/ma16196427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
A Pt-coated Ni layer supported on a Ni foam catalyst (denoted PtNi/Nifoam) was investigated for the electro-oxidation of the formic acid (FAO) in acidic media. The prepared PtNi/Nifoam catalyst was studied as a function of the formic acid (FA) concentration at bare Pt and PtNi/Nifoam catalysts. The catalytic activity of the PtNi/Nifoam catalysts, studied on the basis of the ratio of the direct and indirect current peaks (jd)/(jnd) for the FAO reaction, showed values approximately 10 times higher compared to those on bare Pt, particularly at low FA concentrations, reflecting the superiority of the former catalysts for the electro-oxidation of FA to CO2. Ni foams provide a large surface area for the FAO, while synergistic effects between Pt nanoparticles and Ni-oxy species layer on Ni foams contribute significantly to the enhanced electro-oxidation of FA via the direct pathway, making it almost equal to the indirect pathway, particularly at low FA concentrations.
Collapse
Affiliation(s)
- Antanas Nacys
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (D.S.); (A.B.); (A.Z.); (D.U.); (R.L.); (V.J.); (V.K.); (B.S.-S.); (L.T.-T.)
| | | | | | | | | | | | | | | | | | | | - Eugenijus Norkus
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (D.S.); (A.B.); (A.Z.); (D.U.); (R.L.); (V.J.); (V.K.); (B.S.-S.); (L.T.-T.)
| |
Collapse
|
2
|
Montaña-Mora G, Qi X, Wang X, Chacón-Borrero J, Martinez-Alanis PR, Yu X, Li J, Xue Q, Arbiol J, Ibáñez M, Cabot A. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Liu Z, Xue J, Li Y. Ultrathin PdCu Nanosheet as Bifunctional Electrocatalysts for Formate Oxidation Reaction and Oxygen Reduction Reaction. SMALL METHODS 2023:e2300021. [PMID: 36960934 DOI: 10.1002/smtd.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The development of robust nonplatinum electrocatalysts to enhance the performance of formate oxidation reaction (FOR) and oxygen reduction reaction (ORR) is one of the key issues for the commercialization of direct formate fuel cells (DFFCs), but still challenging. Herein, a structurally controlled 3D flower-like PdCu nanosheet (NS) catalyst is synthesized by a method of oil bath reduction under mild conditions as a bifunctional electrocatalyst for DFFCs. Under the dual tuning on the composition and intermetallic phase, the PdCu nanosheet catalyst exhibits 8.67 times higher mass activity for anodic formate oxidation reaction than the commercial Pd/C. For the cathodic ORR, a positive shift half-wave potential is obtained for PdCu nanosheets exceeding Pt/C. Moreover, after a long-term stability test, the current density of the PdCu nanosheet catalyst for FOR and ORR can be well maintained with the least activity decay. When the PdCu NSs are used as optimized anode and cathode electrodes for DFFCs enable a peak power density as high as 53 mW cm-2 at room temperature, which is about 1.3 times higher than that of the commercial Pd/C and Pt/C as anode and cathode electrodes. This work provides a potential strategy to improve the catalytic performance of non-Pt-based nanocatalysts.
Collapse
Affiliation(s)
- Zhipeng Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinling Xue
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yinshi Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
4
|
Tamasauskaite-Tamasiunaite L, Jablonskienė J, Šimkūnaitė D, Volperts A, Plavniece A, Dobele G, Zhurinsh A, Jasulaitiene V, Niaura G, Drabavicius A, Juel M, Colmenares-Rausseo L, Kruusenberg I, Kaare K, Norkus E. Black Liquor and Wood Char-Derived Nitrogen-Doped Carbon Materials for Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2551. [PMID: 37048845 PMCID: PMC10094988 DOI: 10.3390/ma16072551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Herein, we present a synthesis route for high-efficiency nitrogen-doped carbon materials using kraft pulping residue, black liquor, and wood charcoal as carbon sources. The synthesized nitrogen-doped carbon materials, based on black liquor and its mixture with wood charcoal, exhibited high specific surface areas (SSAs) of 2481 and 2690 m2 g-1, respectively, as well as a high volume of mesopores with an average size of 2.9-4.6 nm. The nitrogen content was approximately 3-4 at% in the synthesized nitrogen-doped carbon materials. A specific capacitance of approximately 81-142 F g-1 was achieved in a 1 M Na2SO4 aqueous solution at a current density of 0.2 A g-1. In addition, the specific capacitance retention was 99% after 1000 cycles, indicating good electrochemical stability.
Collapse
Affiliation(s)
| | - Jolita Jablonskienė
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
| | - Dijana Šimkūnaitė
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
| | | | - Ance Plavniece
- Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| | - Galina Dobele
- Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| | - Aivars Zhurinsh
- Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| | | | - Gediminas Niaura
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
| | - Audrius Drabavicius
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
| | - Mari Juel
- SINTEF Industry, Sustainable Energy Technology, NO-7465 Trondheim, Norway
| | | | - Ivar Kruusenberg
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Kätlin Kaare
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Eugenijus Norkus
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Hossain SS, Ahmad Alwi MM, Saleem J, Al-Odail F, Basu A, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cell-II-Platinum-Based Catalysts. CHEM REC 2022; 22:e202200156. [PMID: 36073789 DOI: 10.1002/tcr.202200156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Indexed: 12/14/2022]
Abstract
Platinum-based catalysts have a long history of application in formic acid oxidation (FAO). The single metal Pt is active in FAO but expensive, scarce, and rapidly deactivates. Understanding the mechanism of FAO over Pt important for the rational design of catalysts. Pt nanomaterials rapidly deactivate because of the CO poisoning of Pt active sites via the dehydration pathway. Alloying with another transition metal improves the performance of Pt-based catalysts through bifunctional, ensemble, and steric effects. Supporting Pt catalysts on a high-surface-area support material is another technique to improve their overall catalytic activity. This review summarizes recent findings on the mechanism of FAO over Pt and Pt-based alloy catalysts. It also summarizes and analyzes binary and ternary Pt-based catalysts to understand their catalytic activity and structure relationship.
Collapse
Affiliation(s)
- Sk Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Muhammad Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Avijit Basu
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|