1
|
Tumino F, Rabia A, Bassi AL, Tosoni S, Casari C. Interface-Driven Assembly of Pentacene/MoS 2 Lateral Heterostructures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:1132-1139. [PMID: 35087609 PMCID: PMC8785183 DOI: 10.1021/acs.jpcc.1c06661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Mixed-dimensional van der Waals heterostructures formed by molecular assemblies and 2D materials provide a novel platform for fundamental nanoscience and future nanoelectronics applications. Here we investigate a prototypical hybrid heterostructure between pentacene molecules and 2D MoS2 nanocrystals, deposited on Au(111) by combining pulsed laser deposition and organic molecular beam epitaxy. The obtained structures were investigated in situ by scanning tunneling microscopy and spectroscopy and analyzed theoretically by density functional theory calculations. Our results show the formation of atomically thin pentacene/MoS2 lateral heterostructures on the Au substrate. The most stable pentacene adsorption site corresponds to MoS2 terminations, where the molecules self-assemble parallel to the direction of MoS2 edges. The density of states changes sharply across the pentacene/MoS2 interface, indicating a weak interfacial coupling, which leaves the electronic signature of MoS2 edge states unaltered. This work unveils the self-organization of abrupt mixed-dimensional lateral heterostructures, opening to hybrid devices based on organic/inorganic one-dimensional junctions.
Collapse
Affiliation(s)
- Francesco Tumino
- Dipartimento
di Energia, Politecnico di Milano, via G. Ponzio 34/3, Milano I-20133, Italy
| | - Andi Rabia
- Dipartimento
di Energia, Politecnico di Milano, via G. Ponzio 34/3, Milano I-20133, Italy
| | - Andrea Li Bassi
- Dipartimento
di Energia, Politecnico di Milano, via G. Ponzio 34/3, Milano I-20133, Italy
| | - Sergio Tosoni
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via Roberto Cozzi 55, 20125 Milano, Italy
| | - Carlo
S. Casari
- Dipartimento
di Energia, Politecnico di Milano, via G. Ponzio 34/3, Milano I-20133, Italy
| |
Collapse
|
2
|
Eichhorn SH, El-Ballouli AO, Cassar A, Kaafarani BR. Columnar Mesomorphism of Board-Shaped Perylene, Diketopyrrolopyrrole, Isoindigo, Indigo, and Quinoxalino-Phenanthrophenazine Dyes. Chempluschem 2021; 86:319-339. [PMID: 33624951 DOI: 10.1002/cplu.202100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Indexed: 12/12/2022]
Abstract
The properties of organic dyes depend as much on their intermolecular interactions as on their molecular structure. While it is generally predictable what supramolecular structure would be ideal for a specific application, the generation of specific supramolecular structures by molecular design and suitable processing methods remains to be a challenge. A versatile approach to different supramolecular structures has been the application of mesomorphism in conjunction with alignment techniques and self-assembly at interfaces. Reviewed here is the columnar mesomorphism of board-shaped dyes perylene, indigo, isoindigo, diketopyrrolopyrrole, and quinoxalinophenanthrophenazine. They generate a larger number of different supramolecular structures than conventional disc-shaped (discotic) mesogens because of their non-circular shape and directional intermolecular interactions. The mesomorphism of all but the perylene derivatives is systematically and comprehensively covered for the first time.
Collapse
Affiliation(s)
- S Holger Eichhorn
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - A O El-Ballouli
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 11481, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Adam Cassar
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Bilal R Kaafarani
- Department of Chemistry, American University of Beirut, Beirut, 1107-2020, Lebanon
| |
Collapse
|
3
|
Le OK, Chihaia V, Van On V, Son DN. N-type and p-type molecular doping on monolayer MoS 2. RSC Adv 2021; 11:8033-8041. [PMID: 35423300 PMCID: PMC8695089 DOI: 10.1039/d0ra10075g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/15/2021] [Indexed: 11/21/2022] Open
Abstract
Monolayer MoS2 has attracted much attention due to its high on/off current ratio, transparency, and suitability for optoelectronic devices. Surface doping by molecular adsorption has proven to be an effective method to facilitate the usage of MoS2. However, there are no works available to systematically clarify the effects of the adsorption of F4TCNQ, PTCDA, and tetracene on the electronic and optical properties of the material. Therefore, this work elucidated the problem by using density functional theory calculations. We found that the adsorption of F4TCNQ and PTCDA turns MoS2 into a p-type semiconductor, while the tetracene converts MoS2 into an n-type semiconductor. The occurrence of a new energy level in the conduction band for F4TCNQ and PTCDA and the valence band for tetracene reduces the bandgap of the monolayer MoS2. Besides, the MoS2/F4TCNQ and MoS2/PTCDA systems exhibit an auxiliary optical peak at the long wavelengths of 950 and 850 nm, respectively. Contrastingly, the MoS2/tetracene modifies the optical spectrum of the monolayer MoS2 only in the ultraviolet region. The findings are in good agreement with the experiments.
Collapse
Affiliation(s)
- Ong Kim Le
- Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Viorel Chihaia
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy Splaiul Independentei 202, Sector 6 060021 Bucharest Romania
| | - Vo Van On
- Institute of Applied Technology, Thu Dau Mot University No. 6 Tran Van On Street, Phu Hoa Ward Thu Dau Mot City Binh Duong Province 75000 Vietnam
| | - Do Ngoc Son
- Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
4
|
Madhuri KP, Sagade AA, Santra PK, John NS. Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:814-820. [PMID: 32551206 PMCID: PMC7277535 DOI: 10.3762/bjnano.11.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The influence of single-layer graphene on top of a SiO2/Si surface on the orientation of nonplanar lead phthalocyanine (PbPc) molecules is studied using two-dimensional grazing incidence X-ray diffraction. The studies indicate the formation of a mixture of polymorphs, i.e., monoclinic and triclinic forms of PbPc with face-on (lying down) and edge-on (standing up) PbPc orientations, respectively. The formation of monoclinic fractions is attributed to the presence of the graphene layer directing the π interactions between the highly delocalized macrocycles. The competing interfacial van der Waals forces and molecule-molecule interactions lead to the formation of a small fraction of triclinic moieties. The nanoscale electrical characterization of the thin PbPc layer on graphene by means of conducting atomic force microscopy shows enhanced vertical conductance with interconnected conducting domains consisting of ordered monoclinic crystallites through which the charge transfer occurs via tunneling. These results show the importance of a templating layer to induce the formation of a required phase of PbPc suitable for specific device applications.
Collapse
Affiliation(s)
- K Priya Madhuri
- Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru 560 013, India
| | - Abhay A Sagade
- Laboratory for Advanced Nanoelectronic Devices, Sir C. V. Raman Research Park, Department of Physics & Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Pralay K Santra
- Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru 560 013, India
| | - Neena S John
- Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru 560 013, India
| |
Collapse
|
5
|
John AS, Roth MW, Firlej L, Kuchta B, Charra F, Wexler C. Self-Assembled Two-Dimensional Nanoporous Crystals as Molecular Sieves: Molecular Dynamics Studies of 1,3,5-Tristyrilbenzene-C n Superstructures. J Chem Inf Model 2020; 60:2155-2168. [PMID: 32155335 DOI: 10.1021/acs.jcim.0c00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to their unique geometry complex, self-assembled nanoporous 2D molecular crystals offer a broad landscape of potential applications, ranging from adsorption and catalysis to optoelectronics, substrate processes, and future nanomachine applications. Here we report and discuss the results of extensive all-atom Molecular Dynamics (MD) investigations of self-assembled organic monolayers (SAOM) of interdigitated 1,3,5-tristyrilbenzene (TSB) molecules terminated by alkoxy peripheral chains Cn containing n carbon atoms (TSB3,5-Cn) deposited onto highly ordered pyrolytic graphite (HOPG). In vacuo structural and electronic properties of the TSB3,5-Cn molecules were initially determined using ab initio second order Møller-Plesset (MP2) calculations. The MD simulations were then used to analyze the behavior of the self-assembled superlattices, including relaxed lattice geometry (in good agreement with experimental results) and stability at ambient temperatures. We show that the intermolecular disordering of the TSB3,5-Cn monolayers arises from competition between decreased rigidity of the alkoxy chains (loss of intramolecular order) and increased stabilization with increasing chain length (afforded by interdigitation). We show that the inclusion of guest organic molecules (e.g., benzene, pyrene, coronene, hexabenzocoronene) into the nanopores (voids formed by interdigitated alkoxy chains) of the TSB3,5-Cn superlattices stabilizes the superstructure, and we highlight the importance of alkoxy chain mobility and available pore space in the dynamics of the systems and their potential application in selective adsorption.
Collapse
Affiliation(s)
- Alexander St John
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Michael W Roth
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Physics Department, Waldorf University, Forest City, Iowa 50436, United States
| | - Lucyna Firlej
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Laboratoire Charles Coulomb, CNRS-Université de Montpellier, 34090 Montpellier, France
| | - Bogdan Kuchta
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.,Laboratoire MADRIEL, Aix-Marseille Université-CNRS, 13007 Marseille, France
| | - Fabrice Charra
- Service de Physique de l'État Condensé (SPEC), Université Paris Saclay, CEA CNRS UMR-3680 CEA Saclay F-91191 Gif-sur-Yvette, France
| | - Carlos Wexler
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Hagara J, Mrkyvkova N, NádaŽdy P, Hodas M, Bodík M, Jergel M, Majková E, Tokár K, Hutár P, Sojková M, Chumakov A, Konovalov O, Pandit P, Roth S, Hinderhofer A, Hulman M, Siffalovic P, Schreiber F. Reorientation of π-conjugated molecules on few-layer MoS 2 films. Phys Chem Chem Phys 2020; 22:3097-3104. [PMID: 31967129 DOI: 10.1039/c9cp05728e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small π-conjugated organic molecules have attracted substantial attention in the past decade as they are considered as candidates for future organic-based (opto-)electronic applications. The molecular arrangement in the organic layer is one of the crucial parameters that determine the efficiency of a given device. The desired orientation of the molecules is achieved by a proper choice of the underlying substrate and growth conditions. Typically, one underlying material supports only one inherent molecular orientation at its interface. Here, we report on two different orientations of diindenoperylene (DIP) molecules on the same underlayer, i.e. on a few-layer MoS2 substrate. We show that DIP molecules adopt a lying-down orientation when deposited on few-layer MoS2 with horizontally oriented layers. In contrast, for vertically aligned MoS2 layers, DIP molecules are arranged in a standing-up manner. Employing in situ and real-time grazing-incidence wide-angle X-ray scattering (GIWAXS), we monitored the stress evolution within the thin DIP layer from the early stages of the growth, revealing different substrate-induced phases for the two molecular orientations. Our study opens up new possibilities for the next-generation of flexible electronics, which might benefit from the combination of MoS2 layers with unique optical and electronic properties and an extensive reservoir of small organic molecules.
Collapse
Affiliation(s)
- Jakub Hagara
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia.
| | - Nada Mrkyvkova
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia. and Center for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 84511, Slovakia
| | - Peter NádaŽdy
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia.
| | - Martin Hodas
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - Michal Bodík
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia.
| | - Matej Jergel
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia. and Center for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 84511, Slovakia
| | - Eva Majková
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia. and Center for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 84511, Slovakia
| | - Kamil Tokár
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia. and Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia
| | - Peter Hutár
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia
| | - Michaela Sojková
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia
| | - Andrei Chumakov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Pallavi Pandit
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg 22607, Germany
| | - Stephan Roth
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg 22607, Germany
| | - Alexander Hinderhofer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - Martin Hulman
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia
| | - Peter Siffalovic
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovakia. and Center for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 84511, Slovakia
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| |
Collapse
|
7
|
Bertolazzi S, Gobbi M, Zhao Y, Backes C, Samorì P. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. Chem Soc Rev 2018; 47:6845-6888. [PMID: 30043037 DOI: 10.1039/c8cs00169c] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-dimensional (2D) semiconductors, such as ultrathin layers of transition metal dichalcogenides (TMDs), offer a unique combination of electronic, optical and mechanical properties, and hold potential to enable a host of new device applications spanning from flexible/wearable (opto)electronics to energy-harvesting and sensing technologies. A critical requirement for developing practical and reliable electronic devices based on semiconducting TMDs consists in achieving a full control over their charge-carrier polarity and doping. Inconveniently, such a challenging task cannot be accomplished by means of well-established doping techniques (e.g. ion implantation and diffusion), which unavoidably damage the 2D crystals resulting in degraded device performances. Nowadays, a number of alternatives are being investigated, including various (supra)molecular chemistry approaches relying on the combination of 2D semiconductors with electroactive donor/acceptor molecules. As yet, a large variety of molecular systems have been utilized for functionalizing 2D TMDs via both covalent and non-covalent interactions. Such research endeavours enabled not only the tuning of the charge-carrier doping but also the engineering of the optical, electronic, magnetic, thermal and sensing properties of semiconducting TMDs for specific device applications. Here, we will review the most enlightening recent advancements in experimental (supra)molecular chemistry methods for tailoring the properties of atomically-thin TMDs - in the form of substrate-supported or solution-dispersed nanosheets - and we will discuss the opportunities and the challenges towards the realization of novel hybrid materials and devices based on 2D semiconductors and molecular systems.
Collapse
Affiliation(s)
- Simone Bertolazzi
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
8
|
Frisenda R, Molina-Mendoza AJ, Mueller T, Castellanos-Gomez A, van der Zant HSJ. Atomically thin p-n junctions based on two-dimensional materials. Chem Soc Rev 2018; 47:3339-3358. [PMID: 29683464 DOI: 10.1039/c7cs00880e] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent research in two-dimensional (2D) materials has boosted a renovated interest in the p-n junction, one of the oldest electrical components which can be used in electronics and optoelectronics. 2D materials offer remarkable flexibility to design novel p-n junction device architectures, not possible with conventional bulk semiconductors. In this Review we thoroughly describe the different 2D p-n junction geometries studied so far, focusing on vertical (out-of-plane) and lateral (in-plane) 2D junctions and on mixed-dimensional junctions. We discuss the assembly methods developed to fabricate 2D p-n junctions making a distinction between top-down and bottom-up approaches. We also revise the literature studying the different applications of these atomically thin p-n junctions in electronic and optoelectronic devices. We discuss experiments on 2D p-n junctions used as current rectifiers, photodetectors, solar cells and light emitting devices. The important electronics and optoelectronics parameters of the discussed devices are listed in a table to facilitate their comparison. We conclude the Review with a critical discussion about the future outlook and challenges of this incipient research field.
Collapse
Affiliation(s)
- Riccardo Frisenda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Campus de Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
9
|
Song Z, Schultz T, Ding Z, Lei B, Han C, Amsalem P, Lin T, Chi D, Wong SL, Zheng YJ, Li MY, Li LJ, Chen W, Koch N, Huang YL, Wee ATS. Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor. ACS NANO 2017; 11:9128-9135. [PMID: 28753270 DOI: 10.1021/acsnano.7b03953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) semiconductors offer a convenient platform to study 2D physics, for example, to understand doping in an atomically thin semiconductor. Here, we demonstrate the fabrication and unravel the electronic properties of a lateral doped/intrinsic heterojunction in a single-layer (SL) tungsten diselenide (WSe2), a prototype semiconducting transition metal dichalcogenide (TMD), partially covered with a molecular acceptor layer, on a graphite substrate. With combined experiments and theoretical modeling, we reveal the fundamental acceptor-induced p-doping mechanism for SL-WSe2. At the 1D border between the doped and undoped SL-WSe2 regions, we observe band bending and explain it by Thomas-Fermi screening. Using atomically resolved scanning tunneling microscopy and spectroscopy, the screening length is determined to be in the few nanometer range, and we assess the carrier density of intrinsic SL-WSe2. These findings are of fundamental and technological importance for understanding and employing surface doping, for example, in designing lateral organic TMD heterostructures for future devices.
Collapse
Affiliation(s)
- Zhibo Song
- Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Thorsten Schultz
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin , Brook-Taylor Straße 6, 12489 Berlin, Germany
| | - Zijing Ding
- Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University , Shenzhen 518060, China
| | - Bo Lei
- Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542
| | - Cheng Han
- Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University , Shenzhen 518060, China
- Department of Chemistry, National University of Singapore , 2 Science Drive 3, Singapore 117542
| | - Patrick Amsalem
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin , Brook-Taylor Straße 6, 12489 Berlin, Germany
| | - Tingting Lin
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Dongzhi Chi
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Swee Liang Wong
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Yu Jie Zheng
- Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542
| | - Ming-Yang Li
- Research Center for Applied Sciences, Academia Sinica , Taipei 10617, Taiwan
- Physical Sciences and Engineering, King Abdullah University of Science and Technology , Thuwal 23955-6900, Saudi Arabia
| | - Lain-Jong Li
- Physical Sciences and Engineering, King Abdullah University of Science and Technology , Thuwal 23955-6900, Saudi Arabia
| | - Wei Chen
- Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542
- Department of Chemistry, National University of Singapore , 2 Science Drive 3, Singapore 117542
- Centre for Advanced 2D Materials, National University of Singapore , Block S14, Level 6, 6 Science Drive 2, Singapore 117546
| | - Norbert Koch
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin , Brook-Taylor Straße 6, 12489 Berlin, Germany
| | - Yu Li Huang
- Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, Singapore 138634
- Centre for Advanced 2D Materials, National University of Singapore , Block S14, Level 6, 6 Science Drive 2, Singapore 117546
| |
Collapse
|
10
|
Tian T, Shih CJ. Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tian Tian
- Institute for Chemical and
Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and
Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| |
Collapse
|
11
|
Laker ZPL, Marsden AJ, De Luca O, Pia AD, Perdigão LMA, Costantini G, Wilson NR. Monolayer-to-thin-film transition in supramolecular assemblies: the role of topological protection. NANOSCALE 2017; 9:11959-11968. [PMID: 28792033 PMCID: PMC5778949 DOI: 10.1039/c7nr03588h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
The ability to control the transition from a two-dimensional (2D) monolayer to the three-dimensional (3D) molecular structure in the growth of organic layers on surfaces is essential for the production of functional thin films and devices. This has, however, proved to be extremely challenging, starting from the currently limited ability to attain a molecular scale characterization of this transition. Here, through innovative application of low-dose electron diffraction and aberration-corrected transmission electron microscopy (acTEM), combined with scanning tunneling microscopy (STM), we reveal the structural changes occurring as film thickness is increased from monolayer to tens of nanometers for supramolecular assembly of two prototypical benzenecarboxylic acids - terephthalic acid (TPA) and trimesic acid (TMA) - on graphene. The intermolecular hydrogen bonding in these molecules is similar and both form well-ordered monolayers on graphene, but their structural transitions with film thickness are very different. While the structure of TPA thin films varies continuously towards the 3D lattice, TMA retains its planar monolayer structure up to a critical thickness, after which a transition to a polycrystalline film occurs. These distinctive structural evolutions can be rationalized in terms of the topological differences in the 3D crystallography of the two molecules. The templated 2D structure of TPA can smoothly map to its 3D structure through continuous molecular tilting within the unit cell, whilst the 3D structure of TMA is topologically distinct from its 2D form, so that only an abrupt transition is possible. The concept of topological protection of the 2D structure gives a new tool for the molecular design of nanostructured films.
Collapse
Affiliation(s)
- Zachary P L Laker
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Alexander J Marsden
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK. and National Graphene Institute, School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Oreste De Luca
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. and Dipartimento di Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Ada Della Pia
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Luís M A Perdigão
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | - Neil R Wilson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
Dong J, Liu F, Wang F, Wang J, Li M, Wen Y, Wang L, Wang G, He J, Jiang C. Configuration-dependent anti-ambipolar van der Waals p-n heterostructures based on pentacene single crystal and MoS 2. NANOSCALE 2017; 9:7519-7525. [PMID: 28534906 DOI: 10.1039/c7nr01822c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently, van der Waals heterostructures (vdWHs) have trigged intensive interest due to their novel electronic and optoelectronic properties. The vdWHs could be achieved by stacking two dimensional layered materials (2DLMs) on top of another and vertically kept by van der Waals forces. Furthermore, organic semiconductors are also known to interact via van der Waals forces, which offer an alternative for the fabrication of organic-inorganic p-n vdWHs. However, the performances of organic-inorganic p-n vdWHs produced so far are rather poor, owing to the unmatched electrical property between the 2DLMs and organic polycrystalline films. To make improvements in such novel heterostructure architectures, here we adopt high quality organic single crystals instead of polycrystalline films to construct a pentacene/MoS2 p-n vdWH. The vdWHs show a much higher current density and better anti-ambipolar characteristics with a highest transconductance of 211 nS. Moreover, device configuration-dependent transfer characteristics are demonstrated and a mechanism of a gate bias modulated vertical space charge zone existing at the vertical p-n vdWHs interface is proposed. These findings provide a new route to optimize the organic-inorganic p-n vdWHs and a guideline for studying the intrinsic properties of vdWHs.
Collapse
Affiliation(s)
- Ji Dong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu X, Gu J, Ding K, Fan D, Hu X, Tseng YW, Lee YH, Menon V, Forrest SR. Photoresponse of an Organic Semiconductor/Two-Dimensional Transition Metal Dichalcogenide Heterojunction. NANO LETTERS 2017; 17:3176-3181. [PMID: 28388064 DOI: 10.1021/acs.nanolett.7b00695] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the optoelectronic properties of a type-II heterojunction (HJ) comprising a monolayer of the transition metal dichalcogenide (TMDC), WS2, and a thin film of the organic semiconductor, 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA). Both theoretical and experimental investigations of the HJ indicate that Frenkel states in the organic layer and two-dimensional Wannier-Mott states in the TMDC dissociate to form hybrid charge transfer excitons at the interface that subsequently dissociate into free charges that are collected at opposing electrodes. A photodiode employing the HJ achieves a peak external quantum efficiency of 1.8 ± 0.2% at a wavelength of 430 ± 10 nm, corresponding to an internal quantum efficiency (IQE) as high as 11 ± 1% in these ultrathin devices. The photoluminescence spectra of PTCDA and PTCDA/WS2 thin films show that excitons in the WS2 have a quenching rate that is approximately seven times higher than in PTCDA. This difference leads to strong wavelength dependence in IQE.
Collapse
Affiliation(s)
| | - Jie Gu
- Department of Physics, City College of New York , New York, New York 10031, United States
| | | | | | | | - Yu-Wen Tseng
- Department of Materials Science & Technology, National Tsing Hua University , Hsinchu City, Taiwan
| | - Yi-Hsien Lee
- Department of Materials Science & Technology, National Tsing Hua University , Hsinchu City, Taiwan
| | - Vinod Menon
- Department of Physics, City College of New York , New York, New York 10031, United States
| | | |
Collapse
|