1
|
Cao L, Liu R, Liu D, Lang P, Zhang W, Saeed S, Song Z, Weng Z, Wang Z. Revealing the Interlayer Interaction Forces in 2D Graphene Materials by Graphene-Wrapped Nanoprobe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21067-21076. [PMID: 39329510 DOI: 10.1021/acs.langmuir.4c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Understanding the interlayer interaction between 2D layered structures is critical for the construction of various micro- and nanoscale functional devices. However, both the normal and the tangential interlayer interactions between 2D layered materials have rarely been studied simultaneously. In this work, an immersion and lift-up method is proposed to wrap a layer of graphene flakes onto a plasma-pretreated atomic force microscopy (AFM) nanoprobe for the measurements of interaction forces by AFM. The normal interactions (adhesion force and adhesion energy) and tangential interactions (friction force) between two different probes (Pt-coated probe and graphene-wrapped probe) and two different 2D graphene materials [graphene and graphene oxide (GO)] were systematically measured, respectively. The adhesion energies of Pt-GO, Pt-graphene, graphene-GO, and graphene-graphene were measured to be 0.72 ± 0.05, 0.41 ± 0.03, 0.19 ± 0.02, and 0.10 ± 0.02 J m-2, respectively. The graphene-graphene contact pair showed the lowest adhesion force (5.57 ± 1.03 nN) and adhesion energy (0.10 ± 0.02 J m-2), which was attributed to the strong covalent bonds and charge density distribution. The friction coefficients of Pt-GO, graphene-GO, Pt-graphene, and graphene-graphene were determined to be 0.38, 0.14, 0.054, and 0.013. The graphene-graphene tribo-pair exhibited a superlow friction state for a long time, which was attributed to incommensurate contact and weak van der Waals interactions. These findings provide a technical route to reveal the interlayer interactions of various 2D layered materials, which can be widely applied in microelectromechanical systems.
Collapse
Affiliation(s)
- Liang Cao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Ri Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Dongdong Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Peng Lang
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenxiao Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Sadaf Saeed
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhankun Weng
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, U.K
| |
Collapse
|
2
|
Weber J, Yuan Y, Pazos S, Kühnel F, Metzke C, Schätz J, Frammelsberger W, Benstetter G, Lanza M. Current-Limited Conductive Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56365-56374. [PMID: 37988286 DOI: 10.1021/acsami.3c10262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Conductive atomic force microscopy (CAFM) has become the preferred tool of many companies and academics to analyze the electronic properties of materials and devices at the nanoscale. This technique scans the surface of a sample using an ultrasharp conductive nanoprobe so that the contact area between them is very small (<100 nm2) and it can measure the properties of the sample with a very high lateral resolution. However, measuring relatively low currents (∼1 nA) in such small areas produces high current densities (∼1000 A/cm2), which almost always results in fast nanoprobe degradation. That is not only expensive but also endangers the reliability of the data collected because detecting which data sets are affected by tip degradation can be complex. Here, we show an inexpensive long-sought solution for this problem by using a current limitation system. We test its performance by measuring the tunneling current across a reference ultrathin dielectric when applying ramped voltage stresses at hundreds of randomly selected locations of its surface, and we conclude that the use of a current limitation system increases the lifetime of the tips by a factor of ∼50. Our work contributes to significantly enhance the reliability of one of the most important characterization techniques in the field of nanoelectronics.
Collapse
Affiliation(s)
- Jonas Weber
- Materials Science and Engineering Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
- Department of Applied Physics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Yue Yuan
- Materials Science and Engineering Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sebastian Pazos
- Materials Science and Engineering Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fabian Kühnel
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
- Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Christoph Metzke
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
- Department of Electrical Engineering, Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Josef Schätz
- Infineon Technologies AG, Wernerwerkstraße 2, 93049 Regensburg, Germany
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Straße 2, 52074 Aachen, Germany
| | - Werner Frammelsberger
- Department of Mechanical Engineering and Mechatronics, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
| | - Günther Benstetter
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
| | - Mario Lanza
- Materials Science and Engineering Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Cao X, Hu X, Qiu Z, Xu T, Yu Z, Li Z, Jin H, Xu B. Ultrasensitive FET biosensor chip based on self-assembled organic nanoporous membrane for femtomolar detection of Amyloid-β. Biomed Microdevices 2023; 25:25. [PMID: 37470844 DOI: 10.1007/s10544-023-00667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Early diagnosis of Alzheimer's disease (AD) is critical for preventing disease progression, however, the diagnosis of AD remains challenging for most patients due to limitations of current sensing technologies. A common pathological feature found in AD-affected brains is the accumulation of Amyloid-β (Aβ) polypeptides, which lead to neurofibrillary tangles and neuroinflammatory plaques. Here, we developed a portable ultrasensitive FET biosensor chip based on a self-assembled nanoporous membrane for ultrasensitive detection of Aβ protein in complex environments. The microscale semiconductor channel was covered with a self-assembled organic nanoporous membrane modified by antibody molecules to pick up and amplify the Aβ protein signal. The nanoporous structure helps protect the sensitive channel from non-target proteins and improves its stability since no chemical functionalization process involved, largely reduces background noise of the sensing platform. When a bio-gated target is captured, the doping state of the polymer bulk could be tuned and amplified the strength of the weak signal, achieving ultrasensitive detecting performance (enabling the device to detect target protein less than 1 fg/ml in 1 µl sample). Moreover, the device simplifies the circuit connection by integrating all the connections on a 2 cm × 2 cm chip, avoiding expensive and complex manufacturing processes, and makes it usable for portable prognosis. We believe that this ultrasensitive, portable, low-cost Aβ sensor chip shows the great potential in the early diagnosis of AD and large-scale population screening applications.
Collapse
Affiliation(s)
- Xiaona Cao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, P.R. China
| | - Xiaoping Hu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, P.R. China
| | - Ziyi Qiu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Ting Xu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, P.R. China
| | - Zhenhua Yu
- The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong, P.R. China
| | - Zhe Li
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, P.R. China.
| | - Huawei Jin
- The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong, P.R. China.
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, P.R. China.
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Buzio R, Gerbi A, Bernini C, Repetto L, Silva A, Vanossi A. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices. ACS APPLIED NANO MATERIALS 2023; 6:11443-11454. [PMID: 37469503 PMCID: PMC10352959 DOI: 10.1021/acsanm.3c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/21/2023]
Abstract
Solution-processed few-layer graphene flakes, dispensed to rotating and sliding contacts via liquid dispersions, are gaining increasing attention as friction modifiers to achieve low friction and wear at technologically relevant interfaces. Vanishing friction states, i.e., superlubricity, have been documented for nearly-ideal nanoscale contacts lubricated by individual graphene flakes. However, there is no clear understanding if superlubricity might persist for larger and morphologically disordered contacts, as those typically obtained by incorporating wet-transferred solution-processed flakes into realistic microscale contact junctions. In this study, we address the friction performance of solution-processed graphene flakes by means of colloidal probe atomic force microscopy. We use a state-of-the-art additive-free aqueous dispersion to coat micrometric silica beads, which are then sled under ambient conditions against prototypical material substrates, namely, graphite and the transition metal dichalcogenides (TMDs) MoS2 and WS2. High resolution microscopy proves that the random assembly of the wet-transferred flakes over the silica probes results into an inhomogeneous coating, formed by graphene patches that control contact mechanics through tens-of-nanometers tall protrusions. Atomic-scale friction force spectroscopy reveals that dissipation proceeds via stick-slip instabilities. Load-controlled transitions from dissipative stick-slip to superlubric continuous sliding may occur for the graphene-graphite homojunctions, whereas single- and multiple-slips dissipative dynamics characterizes the graphene-TMD heterojunctions. Systematic numerical simulations demonstrate that the thermally activated single-asperity Prandtl-Tomlinson model comprehensively describes friction experiments involving different graphene-coated colloidal probes, material substrates, and sliding regimes. Our work establishes experimental procedures and key concepts that enable mesoscale superlubricity by wet-transferred liquid-processed graphene flakes. Together with the rise of scalable material printing techniques, our findings support the use of such nanomaterials to approach superlubricity in micro electromechanical systems.
Collapse
Affiliation(s)
- Renato Buzio
- CNR-SPIN, C.so F.M. Perrone 24, Genova 16152, Italy
| | - Andrea Gerbi
- CNR-SPIN, C.so F.M. Perrone 24, Genova 16152, Italy
| | | | - Luca Repetto
- Dipartimento
di Fisica, Università degli Studi
di Genova, Via Dodecaneso 33, Genova 16146, Italy
| | - Andrea Silva
- CNR-IOM
Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
- International
School for Advanced Studies (SISSA), Via Bonomea 265, Trieste 34136, Italy
| | - Andrea Vanossi
- CNR-IOM
Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
- International
School for Advanced Studies (SISSA), Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
5
|
Weber J, Yuan Y, Kühnel F, Metzke C, Schätz J, Frammelsberger W, Benstetter G, Lanza M. Solid Platinum Nanoprobes for Highly Reliable Conductive Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21602-21608. [PMID: 37083396 PMCID: PMC10165598 DOI: 10.1021/acsami.3c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Conductive atomic force microscopy (CAFM) is a powerful technique to investigate electrical and mechanical properties of materials and devices at the nanoscale. However, its main challenge is the reliability of the probe tips and their interaction with the samples. The most common probe tips used in CAFM studies are made of Si coated with a thin (∼20 nm) film of Pt or Pt-rich alloys (such as Pt/Ir), but this can degrade fast due to high current densities (>102A/cm2) and mechanical frictions. Si tips coated with doped diamond and solid doped diamond tips are more durable, but they are significantly more expensive and their high stiffness often damages the surface of most samples. One growing alternative is to use solid Pt tips, which have an intermediate price and are expected to be more durable than metal-coated silicon tips. However, a thorough characterization of the performance of solid Pt probes for CAFM research has never been reported. In this article, we characterize the performance of solid Pt probes for nanoelectronics research by performing various types of experiments and compare them to Pt/Ir-coated Si probes. Our results indicate that solid Pt probes exhibit a lateral resolution that is very similar to that of Pt/Ir-coated Si probes but with the big advantage of a much longer lifetime. Moreover, the probe-to-probe deviation of the electrical data collected is small. The use of solid Pt probes can help researchers to enhance the reliability of their CAFM experiments.
Collapse
Affiliation(s)
- Jonas Weber
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
- Department of Applied Physics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Yue Yuan
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fabian Kühnel
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
- Department of Electrical Engineering and Information Technology, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Christoph Metzke
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
- Department of Electrical Engineering, Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Josef Schätz
- Infineon Technologies AG, Wernerwerkstraße 2, 93049 Regensburg, Germany
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Straße 2, 52074 Aachen, Germany
| | - Werner Frammelsberger
- Department of Mechanical Engineering and Mechatronics, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
| | - Günther Benstetter
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany
| | - Mario Lanza
- Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Wang S, Hossain MZ, Han T, Shinozuka K, Suzuki T, Kuwana A, Kobayashi H. Avidin-Biotin Technology in Gold Nanoparticle-Decorated Graphene Field Effect Transistors for Detection of Biotinylated Macromolecules with Ultrahigh Sensitivity and Specificity. ACS OMEGA 2020; 5:30037-30046. [PMID: 33251439 PMCID: PMC7689884 DOI: 10.1021/acsomega.0c04429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/22/2020] [Indexed: 05/28/2023]
Abstract
The strong and specific noncovalent interaction between avidin and biotin is widely exploited in different types of enzyme-linked immunosorbent assay kits, labeled immunosensors, and polymer-based sensing devices for the detection of different biomarkers specific to different diseases such as cancer and influenza. Here, we employed the avidin-biotin technology in a novel gold nanoparticle-decorated graphene field-effect transistor (AuNP-GFET) and demonstrated the specific detection of the biotinylated macromolecules such as biotinylated proteins and nucleotides in the sub-picomolar (pM) range. The AuNP-GFET was constructed by fabricating six pairs of interdigital electrodes on graphene transferred on a SiO2/Si substrate. The sensing performance of AuNP-GFET was characterized by the real-time two-terminal electrical current measurement upon injection of the analyte solution into a silicone pool preattached onto the electrodes. Avidin, a tetrameric biotin-binding protein with strong affinity and specificity, immobilized on AuNP-decorated single-layer graphene, was used as the sensing platform and transduced the electrical signal upon binding to the analyte macromolecules. The sensing capability of the AuNP-GFET was tested with the biotinylated protein A. Sensitivity of the present biosensor was estimated to be ∼0.4 pM. The specificity and applicability of the biosensor were confirmed using both synthetic and real samples. Because the biotin label can retain its binding capability to avidin with strong affinity and specificity even after conjugating with varieties of proteins and nucleotides, the present AuNP-GFET biosensor is expected to promote the research in developing different biosensors.
Collapse
Affiliation(s)
- Shiyu Wang
- Division
of Electronics and Informatics, Graduate School of Science and Engineering, Gunma University 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
| | - Md. Zakir Hossain
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Kiryu 376-8515, Japan
| | - Tao Han
- Department
of Oncology, The First Affiliated Hospital
of China Medical University, Shenyang 110001, China
| | - Kazuo Shinozuka
- Division
of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Takaaki Suzuki
- Division
of Mechanical Science and Technology, Gunma
University, Kiryu 376-8515, Japan
| | - Anna Kuwana
- Division
of Electronics and Informatics, Graduate School of Science and Engineering, Gunma University 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
| | - Haruo Kobayashi
- Division
of Electronics and Informatics, Graduate School of Science and Engineering, Gunma University 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
| |
Collapse
|
7
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
8
|
Understanding Current Instabilities in Conductive Atomic Force Microscopy. MATERIALS 2019; 12:ma12030459. [PMID: 30717254 PMCID: PMC6384822 DOI: 10.3390/ma12030459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 11/16/2022]
Abstract
: Conductive atomic force microscopy (CAFM) is one of the most powerful techniques in studying the electrical properties of various materials at the nanoscale. However, understanding current fluctuations within one study (due to degradation of the probe tips) and from one study to another (due to the use of probe tips with different characteristics), are still two major problems that may drive CAFM researchers to extract wrong conclusions. In this manuscript, these two issues are statistically analyzed by collecting experimental CAFM data and processing them using two different computational models. Our study indicates that: (i) before their complete degradation, CAFM tips show a stable state with degraded conductance, which is difficult to detect and it requires CAFM tip conductivity characterization before and after the CAFM experiments; and (ii) CAFM tips with low spring constants may unavoidably lead to the presence of a ~1.2 nm thick water film at the tip/sample junction, even if the maximum contact force allowed by the setup is applied. These two phenomena can easily drive CAFM users to overestimate the properties of the samples under test (e.g., oxide thickness). Our study can help researchers to better understand the current shifts that were observed during their CAFM experiments, as well as which probe tip to use and how it degrades. Ultimately, this work may contribute to enhancing the reliability of CAFM investigations.
Collapse
|
9
|
Liu Y, Song A, Xu Z, Zong R, Zhang J, Yang W, Wang R, Hu Y, Luo J, Ma T. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips. ACS NANO 2018; 12:7638-7646. [PMID: 30060665 DOI: 10.1021/acsnano.7b09083] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interlayer friction between the atomic planes of 2D materials and heterostructures is a promising probe of the physics in their interlayer couplings and superlubricity. However, it is still challenging to measure the interlayer friction between well-defined 2D layers. We propose an approach of thermally assisted mechanical exfoliation and transfer to fabricate various 2D flake-wrapped atomic force microscopy (AFM) tips and to directly measure the interlayer friction between 2D flakes in single-crystalline contact. First, superlubricity between different 2D flakes and layered bulk materials is achieved with a friction coefficient as low as 10-4. The rotation angle dependence of superlubricity is observed for friction between graphite layers, whereas it is not observed between graphite and h-BN because of the incommensurate contact of the mismatched lattices. Second, the interlayer lateral force map between ReS2 layers is measured with atomic resolution, showing hexagonal patterns, as further verified by theoretical simulations. The tribological system constructed here offers an experimental platform to study interlayer couplings and friction between 2D flakes and layered bulk materials.
Collapse
Affiliation(s)
- Yanmin Liu
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , People's Republic of China
| | - Aisheng Song
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , People's Republic of China
| | - Zhi Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Ruilong Zong
- National Center of Electron Spectroscopy in Beijing , Beijing 100084 , People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , People's Republic of China
| | - Wenyan Yang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , People's Republic of China
| | - Rong Wang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yuanzhong Hu
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , People's Republic of China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , People's Republic of China
| | - TianBao Ma
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
10
|
Sliding Dynamics of Parallel Graphene Sheets: Effect of Geometry and Van Der Waals Interactions on Nano-Spring Behavior. CRYSTALS 2018. [DOI: 10.3390/cryst8040149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|