1
|
Ray D, Madani M, Dhont JKG, Platten F, Kang K. Electric field-induced control of protein crystal morphology. SOFT MATTER 2025; 21:3012-3021. [PMID: 40152611 DOI: 10.1039/d5sm00181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
In a previous study (D. Ray, et al., J. Phys. Chem. Lett., 2024, 15, 8108-8113), we found that an alternating electric field considerably affects the location of the crystallization boundary and the liquid-liquid phase separation line as well as crystallization kinetics in lysozyme solutions containing sodium thiocyanate (NaSCN). The present study extends this work by investigating the influence of the same electric field on the microscopic appearance of lysozyme crystals as they form from a supersaturated solution. We observe a variety of distinct crystal morphologies, which we classify as single- and multi-arm crystals, flower-like crystal structures, whiskers, and sea-urchin crystals. Crystal morphologies exhibit significant variations with changes in protein and salt concentrations, and the electric field strongly alters the morphology-state diagram in the protein-versus-salt concentration plane. This alteration is likely due to the field effect on protein-protein interactions. We believe the effect is mediated by the field-enhanced adsorption of SCN- ions to the surface of lysozyme, ultimately driving the observed changes in crystallization behavior. These findings offer insights into how electric fields can be used to control crystal formation and morphology in protein systems.
Collapse
Affiliation(s)
- Debes Ray
- Institute of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428 Jülich, Germany.
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Mahnoush Madani
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Jan K G Dhont
- Institute of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428 Jülich, Germany.
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Florian Platten
- Institute of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428 Jülich, Germany.
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Kyongok Kang
- Institute of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428 Jülich, Germany.
| |
Collapse
|
2
|
Ray D, Madani M, Dhont JKG, Platten F, Kang K. The Effects of Electric Fields on Protein Phase Behavior and Protein Crystallization Kinetics. J Phys Chem Lett 2024; 15:8108-8113. [PMID: 39087873 PMCID: PMC11318033 DOI: 10.1021/acs.jpclett.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
We experimentally studied the effects of an externally applied electric field on protein crystallization and liquid-liquid phase separation (LLPS) and its crystallization kinetics. For a surprisingly weak alternating current (AC) electric field, crystallization was found to occur in a wider region of the phase diagram, while nucleation induction times were reduced, and crystal growth rates were enhanced. LLPS on the contrary was suppressed, which diminishes the tendency for a two-step crystallization scenario. The effect of the electric field is ascribed to a change in the protein-protein interaction potential.
Collapse
Affiliation(s)
- D. Ray
- Institute
of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428, Jülich, Germany
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Trombay, Mumbai 400085, India
| | - M. Madani
- Faculty
of Mathematics and Natural Sciences, Heinrich
Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - J. K. G. Dhont
- Institute
of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428, Jülich, Germany
- Faculty
of Mathematics and Natural Sciences, Heinrich
Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - F. Platten
- Institute
of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428, Jülich, Germany
- Faculty
of Mathematics and Natural Sciences, Heinrich
Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - K. Kang
- Institute
of Biological Information Processing IBI-4, Forschungszentrum Jülich, 52428, Jülich, Germany
| |
Collapse
|
3
|
Matsuzaki T, Kawamura R, Yamamoto A, Takahashi H, Fujii M, Togo S, Yoneyama Y, Hakuno F, Takahashi SI, Suganuma M, Nakabayashi S, Sharma S, Gimzewski JK, Yoshikawa HY. Advanced Interferometry with 3-D Structured Illumination Reveals the Surface Fine Structure of Complex Biospecimens. J Phys Chem Lett 2024; 15:1097-1104. [PMID: 38262433 DOI: 10.1021/acs.jpclett.3c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Interference reflection microscopy (IRM) is a powerful, label-free technique to visualize the surface structure of biospecimens. However, stray light outside a focal plane obscures the surface fine structures beyond the diffraction limit (dxy ≈ 200 nm). Here, we developed an advanced interferometry approach to visualize the surface fine structure of complex biospecimens, ranging from protein assemblies to single cells. Compared to 2-D, our unique 3-D structure illumination introduced to IRM enabled successful visualization of fine structures and the dynamics of protein crystal growth under lateral (dx-y ≈ 110 nm) and axial (dx-z ≤ 5 nm) resolutions and dynamical adhesion of microtubule fiber networks with lateral resolution (dx-y ≈ 120 nm), 10 times greater than unstructured IRM (dx-y ≈ 1000 nm). Simultaneous reflection/fluorescence imaging provides new physical fingerprints for studying complex biospecimens and biological processes such as myogenic differentiation and highlights the potential use of advanced interferometry to study key nanostructures of complex biospecimens.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita 565-0871, Japan
- Center for Future Innovation, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuzo Kawamura
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Hozumi Takahashi
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita 565-0871, Japan
| | - Mai Fujii
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan
| | - Shodai Togo
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, bunkyo-Ku, Tokyo 113-8510, Japan
| | - Fumihiko Hakuno
- Institute of Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, bunkyo-Ku, Tokyo 113-8510, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Masami Suganuma
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan
| | - Seiichiro Nakabayashi
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan
| | - Shivani Sharma
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Pathology & Laboratory Medicine, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - James K Gimzewski
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
- WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
4
|
Pethig R. Protein Dielectrophoresis: A Tale of Two Clausius-Mossottis-Or Something Else? MICROMACHINES 2022; 13:261. [PMID: 35208384 PMCID: PMC8876334 DOI: 10.3390/mi13020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Standard DEP theory, based on the Clausius-Mossotti (CM) factor derived from solving the boundary-value problem of macroscopic electrostatics, fails to describe the dielectrophoresis (DEP) data obtained for 22 different globular proteins over the past three decades. The calculated DEP force appears far too small to overcome the dispersive forces associated with Brownian motion. An empirical theory, employing the equivalent of a molecular version of the macroscopic CM-factor, predicts a protein's DEP response from the magnitude of the dielectric β-dispersion produced by its relaxing permanent dipole moment. A new theory, supported by molecular dynamics simulations, replaces the macroscopic boundary-value problem with calculation of the cross-correlation between the protein and water dipoles of its hydration shell. The empirical and formal theory predicts a positive DEP response for protein molecules up to MHz frequencies, a result consistently reported by electrode-based (eDEP) experiments. However, insulator-based (iDEP) experiments have reported negative DEP responses. This could result from crystallization or aggregation of the proteins (for which standard DEP theory predicts negative DEP) or the dominating influences of electrothermal and other electrokinetic (some non-linear) forces now being considered in iDEP theory.
Collapse
Affiliation(s)
- Ronald Pethig
- Institute for Integrated Micro and Nano Systems, School of Engineering & Electronics, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JF, UK
| |
Collapse
|
5
|
New Insight into the Effects of Various Parameters on the Crystallization of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO) from Alcaligenes eutrophus. CRYSTALS 2022. [DOI: 10.3390/cryst12020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Crystallization remains a bottleneck for determining the three-dimensional X-ray structure of proteins. Many parameters influence the complexity of protein crystallization. Therefore, it is not easy to systematically examine all of these parameters individually during crystallization because of a limited quantity of purified protein. We studied several factors that influence crystallization including protein concentration, pH, temperature, age, volume of crystallization, inhibitors, metal ions, seeding, and precipitating agents on RuBisCO samples from Alcaligenes eutrophus which are not only freshly purified, but are also dissolved both individually and in combination from microcrystals and precipitated droplets of recycled RuBisCO. Single-, twin-, and/or microcrystals are dependent upon the concentration of RuBisCO by both RuBisCO samples. The morphology, either orthorhombic- or monoclinic-space group, depends upon pH. Furthermore, ammonium sulfate((NH4)2SO4) concentration at 20 °C (22% saturated) and/or at 4 °C (28% saturated) affected the crystallization of RuBisCO differently from one another. Finally, the age of RuBisCO also affected more uniformity and forming sharp edge during crystallization. Unexpected surprising monoclinic RuBisCO crystals were grown from dissolved microcrystals and precipitated droplets recycled RuBisCO samples. This quaternary RuBisCO single crystal, which contained Mg2+ and HCO3 for an activated ternary complex and is inhibited with a transition substrate analogue, CABP (2-carboxyarabinitol-1,5-bisphosphate)−, diffracts better than 2.2 Å. It is different from Hansen S. et al. reported RuBisCO crystals which were grown ab initio in absence of Mg2+, HCO3− and CABP, a structure which was determined at 2.7 Å resolution.
Collapse
|
6
|
Abstract
This highlight gives a helicopter view on the application of electric fields and discusses its potential future applications.
Collapse
Affiliation(s)
- Lee Fiona Alexander
- Institute for Materials and Processes
- School of Engineering
- The University of Edinburgh
- Edinburgh
- UK
| | - Norbert Radacsi
- Institute for Materials and Processes
- School of Engineering
- The University of Edinburgh
- Edinburgh
- UK
| |
Collapse
|
7
|
Abstract
This paper reviews investigations on protein crystallization. It aims to present a comprehensive rather than complete account of recent studies and efforts to elucidate the most intimate mechanisms of protein crystal nucleation. It is emphasized that both physical and biochemical factors are at play during this process. Recently-discovered molecular scale pathways for protein crystal nucleation are considered first. The bond selection during protein crystal lattice formation, which is a typical biochemically-conditioned peculiarity of the crystallization process, is revisited. Novel approaches allow us to quantitatively describe some protein crystallization cases. Additional light is shed on the protein crystal nucleation in pores and crevices by employing the so-called EBDE method (equilibration between crystal bond and destructive energies). Also, protein crystal nucleation in solution flow is considered.
Collapse
|
8
|
Wang L, He G, Ruan X, Zhang D, Xiao W, Li X, Wu X, Jiang X. Tailored Robust Hydrogel Composite Membranes for Continuous Protein Crystallization with Ultrahigh Morphology Selectivity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26653-26661. [PMID: 30009592 DOI: 10.1021/acsami.8b08381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The tailored and robust hydrogel composite membranes (HCMs) with diverse ion adsorption and interfacial nucleation property are prepared and successfully used in the continuous lysozyme crystallization. Beyond the heterogeneous supporter, the HCMs functioning as an interface ion concentration controller and nucleation generator are demonstrated. By constructing accurately controlled nucleation and growth circumstances in the HCM-equipped membrane crystallizer, the target desired morphology (hexagon cube) and brand-new morphology (multiple flower shape) that differ from the ones created in the conventional crystallizer are continuously and repetitively generated with ultrahigh morphology selectivity. These tailored robust HCMs show great potential for improving current approaches to continuous protein crystallization with specific crystal targets from laboratorial research to actual engineering applications.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province , Dalian University of Technology , Dalian , Liaoning 116024 , China
- School of Petroleum and Chemical Engineering , Dalian University of Technology at Panjin , Panjin 124221 , China
| | - Xuehua Ruan
- School of Petroleum and Chemical Engineering , Dalian University of Technology at Panjin , Panjin 124221 , China
| | - Daishuang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province , Dalian University of Technology , Dalian , Liaoning 116024 , China
| |
Collapse
|
9
|
Fundamental interfacial mechanisms underlying electrofreezing. Adv Colloid Interface Sci 2018; 251:26-43. [PMID: 29289337 DOI: 10.1016/j.cis.2017.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/19/2017] [Accepted: 12/03/2017] [Indexed: 11/24/2022]
Abstract
This article reviews the fundamental interfacial mechanisms underlying electrofreezing (promotion of ice nucleation via the application of an electric field). Electrofreezing has been an active research topic for many decades, with applications in food preservation, cryopreservation, cryogenics and ice formation. There is substantial literature detailing experimental and simulations-based studies, which aim to understand the complex mechanisms underlying accelerated ice nucleation in the presence of electric fields and electrical charge. This work provides a critical review of all such studies. It is noted that application-focused studies of electrofreezing are excluded from this review; such studies have been previously reviewed in literature. This review focuses only on fundamental studies, which analyze the physical mechanisms underlying electrofreezing. Topics reviewed include experimental studies on electrofreezing (DC and AC electric fields), pyroelectricity-based control of freezing, molecular dynamics simulations of electrofreezing, and thermodynamics-based explanations of electrofreezing. Overall, it is seen that electrofreezing can enable disruptive advancements in the control of liquid-to-solid phase change, and that our current understanding of the underlying mechanisms can be significantly improved through further studies of various interfacial effects coming into play.
Collapse
|