1
|
Zakeri F, Widdifield CM. 1H isotropic chemical shift metrics for NMR crystallography of powdered molecular organics. Phys Chem Chem Phys 2025; 27:4368-4382. [PMID: 39927488 DOI: 10.1039/d4cp04354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Hydrogen magnetic shielding values from gauge including projector augmented wave (GIPAW) density functional theory (DFT) calculations, when combined with experimental solid-state 1H nuclear magnetic resonance (NMR) chemical shift data collected on powdered microcrystalline organics, have been used to perform various crystal structure characterization tasks (e.g., refinements, verifications, determinations). These tasks fall under the umbrella of 'NMR crystallography'. In several instances, an isotropic 1H chemical shift (δiso) root-mean-squared deviation (RMSD) metric has been applied during these studies (including the first de novo crystal structure determination: M. Baias, J.-N. Dumez, P. H. Svensson, S. Schantz, G. M. Day and L. Emsley, De Novo Determination of the Crystal Structure of a Large Drug Molecule by Crystal Structure Prediction-Based Powder NMR Crystallography, J. Am. Chem. Soc., 2013, 135, 17501-17507). While it is assumed that the 1H δiso RMSD metrics are converged, our study probes the robustness of these metrics. Specifically, we consider how the structure of the δiso(1H) RMSD metric varies depending on: (i) selected GIPAW DFT input parameters; (ii) the number of fitting parameters used during linear mapping; and (iii) the GIPAW DFT computational software. These δiso(1H) RMSD metrics were produced from a set of 24 benchmark crystal structures (428 crystallographically unique hydrogen atom environments). Interestingly, we find that the δiso(1H) RMSD metric structures are very robust to substantial degradation in the quality of the GIPAW DFT computations, which is unexplored in the NMR crystallography literature as prior studies focus on convergence rather than divergence. We then briefly consider the impact of our findings using the structure determination of thymol as an illustrative example and our results strongly suggest that if δiso(1H) RMSD metrics are being used, then the GIPAW DFT computations can be performed much more efficiently than at present. Overall, this should allow for more efficient NMR crystallography characterization tasks of important materials that contain 1H nuclei, such as organic pharmaceuticals.
Collapse
Affiliation(s)
- Fatemeh Zakeri
- Department of Chemistry & Biochemistry, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada.
| | - Cory M Widdifield
- Department of Chemistry & Biochemistry, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
2
|
Pokorný V, Touš P, Štejfa V, Růžička K, Rohlíček J, Czernek J, Brus J, Červinka C. Anisotropy, segmental dynamics and polymorphism of crystalline biogenic carboxylic acids. Phys Chem Chem Phys 2022; 24:25904-25917. [PMID: 36260017 DOI: 10.1039/d2cp03698c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carboxylic acids of the Krebs cycle possess invaluable biochemical significance. Still, there are severe gaps in the availability of thermodynamic and crystallographic data, as well as ambiguities prevailing in the literature on the thermodynamic characterization and polymorph ranking. Providing an unambiguous description of the structure, thermodynamics and polymorphism of their neat crystalline phases requires a complex multidisciplinary approach. This work presents results of an extensive investigation of the structural anisotropy of the thermal expansion and local dynamics within these crystals, obtained from a beneficial cooperation of NMR crystallography and ab initio calculations of non-covalent interactions. The observed structural anisotropy and spin-lattice relaxation times are traced to large spatial variations in the strength of molecular interactions in the crystal lattice, especially in the orientation of the hydrogen bonds. A completely resolved crystal structure for oxaloacetic acid is reported for the first time. Thanks to multi-instrumental calorimetric effort, this work clarifies phase behavior, determines third-law entropies of the crystals, and states definitive polymorph ranking for succinic and fumaric acids. These thermodynamic observations are then interpreted in terms of first-principles quasi-harmonic calculations of cohesive properties. A sophisticated model capturing electronic, thermal, and configurational-entropic effects on the crystal structure approaches captures the subtle Gibbs energy differences governing polymorph ranking for succinic and fumaric acids, representing another success story of computational chemistry.
Collapse
Affiliation(s)
- Václav Pokorný
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Petr Touš
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Květoslav Růžička
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Jan Rohlíček
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
| | - Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Al-Ani A, Szell PMJ, Rehman Z, Blade H, Wheatcroft HP, Hughes LP, Brown SP, Wilson CC. Combining X-ray and NMR Crystallography to Explore the Crystallographic Disorder in Salbutamol Oxalate. CRYSTAL GROWTH & DESIGN 2022; 22:4696-4707. [PMID: 35971412 PMCID: PMC9374327 DOI: 10.1021/acs.cgd.1c01093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Salbutamol is an active pharmaceutical ingredient commonly used to treat respiratory distress and is listed by the World Health Organization as an essential medicine. Here, we establish the crystal structure of its oxalate form, salbutamol oxalate, and explore the nature of its crystallographic disorder by combined X-ray crystallography and 13C cross-polarization (CP) magic-angle spinning (MAS) solid-state NMR. The *C-OH chiral center of salbutamol (note that the crystal structures are a racemic mixture of the two enantiomers of salbutamol) is disordered over two positions, and the tert-butyl group is rotating rapidly, as revealed by 13C solid-state NMR. The impact of crystallization conditions on the disorder was investigated, finding variations in the occupancy ratio of the *C-OH chiral center between single crystals and a consistency across samples in the bulk powder. Overall, this work highlights the contrast between investigating crystallographic disorder by X-ray diffraction and solid-state NMR experiment, and gauge-including projector-augmented-wave (GIPAW) density functional theory (DFT) calculations, with their combined use, yielding an improved understanding of the nature of the crystallographic disorder between the local (i.e., as viewed by NMR) and longer-range periodic (i.e., as viewed by diffraction) scale.
Collapse
Affiliation(s)
- Aneesa
J. Al-Ani
- Centre
for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | | | - Zainab Rehman
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Helen Blade
- Oral
Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Helen P. Wheatcroft
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Leslie P. Hughes
- Oral
Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Steven P. Brown
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Chick C. Wilson
- Centre
for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
4
|
Enantiotropy of Simvastatin as a Result of Weakened Interactions in the Crystal Lattice: Entropy-Driven Double Transitions and the Transient Modulated Phase as Seen by Solid-State NMR Spectroscopy. Molecules 2022; 27:molecules27030679. [PMID: 35163943 PMCID: PMC8838109 DOI: 10.3390/molecules27030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/01/2022] Open
Abstract
In crystalline molecular solids, in the absence of strong intermolecular interactions, entropy-driven processes play a key role in the formation of dynamically modulated transient phases. Specifically, in crystalline simvastatin, the observed fully reversible enantiotropic behavior is associated with multiple order–disorder transitions: upon cooling, the dynamically disordered high-temperature polymorphic Form I is transformed to the completely ordered low-temperature polymorphic Form III via the intermediate (transient) modulated phase II. This behavior is associated with a significant reduction in the kinetic energy of the rotating and flipping ester substituents, as well as a decrease in structural ordering into two distinct positions. In transient phase II, the conventional three-dimensional structure is modulated by periodic distortions caused by cooperative conformation exchange of the ester substituent between the two states, which is enabled by weakened hydrogen bonding. Based on solid-state NMR data analysis, the mechanism of the enantiotropic phase transition and the presence of the transient modulated phase are documented.
Collapse
|
5
|
Sánchez‐Andrada P, Marín‐Luna M, Alkorta I, Elguero J, Percho G, Santa María D, Claramunt RM. Conformational analysis of 2,5‐diaryl‐4‐methyl‐2,
4‐dihydro‐3
H
‐1,2,4‐triazol‐3‐ones: Multinuclear
NMR
and
DFT
calculations. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pilar Sánchez‐Andrada
- Departamento de Química Orgánica, Facultad de Química Universidad de Murcia, Regional Campus of International Excellence “Campus Mare Nostrum” Murcia Spain
| | - Marta Marín‐Luna
- Departamento de Química Orgánica, Facultad de Química Universidad de Murcia, Regional Campus of International Excellence “Campus Mare Nostrum” Murcia Spain
| | | | | | - Gema Percho
- Departamento de Química Orgánica y Bio‐Orgánica, Facultad de Ciencias UNED Madrid Spain
| | - Dolores Santa María
- Departamento de Química Orgánica y Bio‐Orgánica, Facultad de Ciencias UNED Madrid Spain
| | - Rosa M. Claramunt
- Departamento de Química Orgánica y Bio‐Orgánica, Facultad de Ciencias UNED Madrid Spain
| |
Collapse
|
6
|
Czernek J, Brus J. Polymorphic Forms of Valinomycin Investigated by NMR Crystallography. Int J Mol Sci 2020; 21:E4907. [PMID: 32664570 PMCID: PMC7404035 DOI: 10.3390/ijms21144907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
A dodecadepsipeptide valinomycin (VLM) has been most recently reported to be a potential anti-coronavirus drug that could be efficiently produced on a large scale. It is thus of importance to study solid-phase forms of VLM in order to be able to ensure its polymorphic purity in drug formulations. The previously available solid-state NMR (SSNMR) data are combined with the plane-wave DFT computations in the NMR crystallography framework. Structural/spectroscopical predictions (the PBE functional/GIPAW method) are obtained to characterize four polymorphs of VLM. Interactions which confer a conformational stability to VLM molecules in these crystalline forms are described in detail. The way how various structural factors affect the values of SSNMR parameters is thoroughly analyzed, and several SSNMR markers of the respective VLM polymorphs are identified. The markers are connected to hydrogen bonding effects upon the corresponding (13C/15N/1H) isotropic chemical shifts of (CO, Namid, Hamid, Hα) VLM backbone nuclei. These results are expected to be crucial for polymorph control of VLM and in probing its interactions in dosage forms.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square #2, 16206 Prague, Czech Republic;
| | | |
Collapse
|
7
|
Hodgkinson P. NMR crystallography of molecular organics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:10-53. [PMID: 32883448 DOI: 10.1016/j.pnmrs.2020.03.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Developments of NMR methodology to characterise the structures of molecular organic structures are reviewed, concentrating on the previous decade of research in which density functional theory-based calculations of NMR parameters in periodic solids have become widespread. With a focus on demonstrating the new structural insights provided, it is shown how "NMR crystallography" has been used in a spectrum of applications from resolving ambiguities in diffraction-derived structures (such as hydrogen atom positioning) to deriving complete structures in the absence of diffraction data. As well as comprehensively reviewing applications, the different aspects of the experimental and computational techniques used in NMR crystallography are surveyed. NMR crystallography is seen to be a rapidly maturing subject area that is increasingly appreciated by the wider crystallographic community.
Collapse
Affiliation(s)
- Paul Hodgkinson
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
8
|
Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides. Int J Mol Sci 2020; 21:ijms21082700. [PMID: 32295042 PMCID: PMC7215618 DOI: 10.3390/ijms21082700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Reliable values of the solid-state NMR (SSNMR) parameters together with precise structural data specific for a given amino acid site in an oligopeptide are needed for the proper interpretation of measurements aiming at an understanding of oligopeptides' function. The periodic density functional theory (DFT)-based computations of geometries and SSNMR chemical shielding tensors (CSTs) of solids are shown to be accurate enough to support the SSNMR investigations of suitably chosen models of oriented samples of oligopeptides. This finding is based on a thorough comparison between the DFT and experimental data for a set of tripeptides with both 13Cα and 15Namid CSTs available from the single-crystal SSNMR measurements and covering the three most common secondary structural elements of polypeptides. Thus, the ground is laid for a quantitative description of local spectral parameters of crystalline oligopeptides, as demonstrated for the backbone 15Namid nuclei of samarosporin I, which is a pentadecapeptide (composed of five classical and ten nonproteinogenic amino acids) featuring a strong antimicrobial activity.
Collapse
|
9
|
Engel EA, Anelli A, Hofstetter A, Paruzzo F, Emsley L, Ceriotti M. A Bayesian approach to NMR crystal structure determination. Phys Chem Chem Phys 2019; 21:23385-23400. [PMID: 31631196 DOI: 10.1039/c9cp04489b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is particularly well suited to determine the structure of molecules and materials in powdered form. Structure determination usually proceeds by finding the best match between experimentally observed NMR chemical shifts and those of candidate structures. Chemical shifts for the candidate configurations have traditionally been computed by electronic-structure methods, and more recently predicted by machine learning. However, the reliability of the determination depends on the errors in the predicted shifts. Here we propose a Bayesian framework for determining the confidence in the identification of the experimental crystal structure, based on knowledge of the typical errors in the electronic structure methods. We demonstrate the approach on the determination of the structures of six organic molecular crystals. We critically assess the reliability of the structure determinations, facilitated by the introduction of a visualization of the similarity between candidate configurations in terms of their chemical shifts and their structures. We also show that the commonly used values for the errors in calculated 13C shifts are underestimated, and that more accurate, self-consistently determined uncertainties make it possible to use 13C shifts to improve the accuracy of structure determinations. Finally, we extend the recently-developed ShiftML model to render it more efficient, accurate, and, most importantly, to evaluate the uncertainties in its predictions. By quantifying the confidence in structure determinations based on ShiftML predictions we further substantiate that it provides a valid replacement for first-principles calculations in NMR crystallography.
Collapse
Affiliation(s)
- Edgar A Engel
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
10
|
Dudek MK, Wielgus E, Paluch P, Śniechowska J, Kostrzewa M, Day GM, Bujacz GD, Potrzebowski MJ. Understanding the formation of apremilast cocrystals. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2019; 75:803-814. [PMID: 32830759 DOI: 10.1107/s205252061900917x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/26/2019] [Indexed: 06/11/2023]
Abstract
Apremilast (APR), an anti-psoriatic agent, easily forms isostructural cocrystals and solvates with aromatic entities, often disobeying at the same time Kitaigorodsky's rule as to the saturation of possible hydrogen-bonding sites. In this paper the reasons for this peculiar behavior are investigated, employing a joint experimental and theoretical approach. This includes the design of cocrystals with coformers having a high propensity towards the formation of both aromatic-aromatic and hydrogen-bonding interactions, determination of their structure, using solid-state NMR spectroscopy and X-ray crystallography, as well as calculations of stabilization energies of formation of the obtained cocrystals, followed by crystal structure prediction calculations and solubility measurements. The findings indicate that the stabilization energies of cocrystal formation are positive in all cases, which results from strain in the APR conformation in these crystal forms. On the other hand, solubility measurements show that the Gibbs free energy of formation of the apremilast:picolinamide cocrystal is negative, suggesting that the formation of the studied cocrystals is entropy driven. This entropic stabilization is associated with the disorder observed in almost all known cocrystals and solvates of APR.
Collapse
Affiliation(s)
- Marta K Dudek
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Justyna Śniechowska
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Maciej Kostrzewa
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| | - Graeme M Day
- Computational Systems Chemistry, School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Grzegorz D Bujacz
- Institute of Technical Biochemistry, Technical University of Lodz, Stefanowskiego 4/10, Lodz, 90-924, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, Lodz, 90363, Poland
| |
Collapse
|
11
|
Marín-Luna M, Claramunt RM, Nieto CI, Alkorta I, Elguero J, Reviriego F. A theoretical NMR study of polymorphism in crystal structures of azoles and benzazoles. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:275-284. [PMID: 30604430 DOI: 10.1002/mrc.4824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
The NMR chemical shifts of two azoles and one benzazole whose crystal structures present polymorphism have been computed using the GIPAW approach. 15 N and 13 C nuclei have been studied. Statistical analysis of the computed 13 C and 15 N chemical shifts indicates that the GIPAW chemical shifts reproduce with a high degree of accuracy those experimentally reported. This methodology can be used to identify other polymorphic crystal structures.
Collapse
Affiliation(s)
- Marta Marín-Luna
- Departamento de Química Orgánica, Universidad de Vigo, Vigo, 36310, Spain
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, Madrid, E-28040, Spain
| | - Carla I Nieto
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, Madrid, E-28040, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, Madrid, E-28006, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, Madrid, E-28006, Spain
| | - Felipe Reviriego
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva, 3, Madrid, E-28006, Spain
| |
Collapse
|
12
|
Czernek J, Brus J. Exploring Accuracy Limits of Predictions of the 1H NMR Chemical Shielding Anisotropy in the Solid State. Molecules 2019; 24:E1731. [PMID: 31058873 PMCID: PMC6539467 DOI: 10.3390/molecules24091731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022] Open
Abstract
The 1H chemical shielding anisotropy (CSA) is an NMR parameter that is exquisitely sensitive to the local environment of protons in crystalline systems, but it is difficult to obtain it experimentally due to the need to concomitantly suppress other anisotropic interactions in the solid-state NMR (SSNMR) pulse sequences. The SSNMR measurements of the 1H CSA are particularly challenging if the fast magic-angle-spinning (MAS) is applied. It is thus important to confront the results of both the single-crystal (SC) and fast-MAS experiments with their theoretical counterparts. Here the plane-waves (PW) DFT calculations have been carried out using two functionals in order to precisely characterize the structures and the 1H NMR chemical shielding tensors (CSTs) of the solid forms of maleic, malonic, and citric acids, and of L-histidine hydrochloride monohydrate. The level of agreement between the PW DFT and either SC or fast-MAS SSNMR 1H CSA data has been critically compared. It has been found that for the eigenvalues of the 1H CSTs provided by the fast-MAS measurements, an accuracy limit of current PW DFT predictions is about two ppm in terms of the standard deviation of the linear regression model, and sources of this error have been thoroughly discussed.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 16206 Prague, Czech Republic.
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 16206 Prague, Czech Republic.
| |
Collapse
|