1
|
Handoko, Adham M, Rachmadi L, Tobing DL, Asmarinah, Fadilah, Dai W, Lee AWM, Gondhowiardjo SA. First Indonesian Nasopharyngeal Cancer Whole Epigenome Sequencing Identify Tumour Suppressor CpG Methylation. Biologics 2025; 19:1-13. [PMID: 39802100 PMCID: PMC11721153 DOI: 10.2147/btt.s490382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Introduction Nasopharyngeal cancer (NPC) is a multifaceted disease characterized by genetic and epigenetic modifications. While Epstein-Barr virus (EBV) infection is a known risk factor, recent studies highlight the significant role of DNA methylation in NPC pathogenesis. Aberrant methylation, particularly at CpG sites, can silence tumour suppressor genes, promoting uncontrolled cell growth. This study aims to analyse the methylation patterns in Indonesian NPC patients through whole-epigenome sequencing. Methods Seven clinical nasopharyngeal cancer samples were collected and confirmed histopathologically. DNA was extracted, sequenced using Oxford Nanopore technology, and aligned to the GRCh38 human reference genome. Methylation analysis was performed using modkit and statistical analysis with R software. Enriched pathways and processes were identified using ClusterProfiler in R, and gene overlap analysis was conducted. Results The analysis identified both globally hypermethylated and hypomethylated NPC samples. Key tumour suppressor genes, such as PRKCB, PLCB3, ITGB3, EPHA2, PLCE1, PRKCD, CDKN2A, CDKN2B, RPS6KA2, ERBB4, LRRC4, AKT1, PPP2R5C, and STK11 were frequently hypermethylated and confirmed to have lower expression in an independent NPC transcriptome cohort, suggesting their role in NPC carcinogenesis. Enriched KEGG pathways included PI3K-Akt signalling, ECM-receptor interaction, and focal adhesion. The presence of EBV DNA was confirmed in all samples, implicating its role in influencing methylation patterns. Discussion This study provides comprehensive insights into the epigenetic landscape of NPC, underscoring the role of CpG methylation in tumour suppressor gene silencing. These findings pave the way for targeted therapies and highlight the need for region-specific approaches in NPC management.
Collapse
Affiliation(s)
- Handoko
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Marlinda Adham
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Otorhinolaryngology - Head and Neck Surgery, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Lisnawati Rachmadi
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomical Pathology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Demak Lumban Tobing
- Department of Clinical Pathology, Dharmais Cancer Hospital, Jakarta, Indonesia
| | - Asmarinah
- Medical Biology Department, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Fadilah
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia-Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), People’s Republic of China
- Clinical Oncology Center, University of Hong Kong – Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Anne Wing Mui Lee
- Clinical Oncology Center, University of Hong Kong – Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Soehartati A Gondhowiardjo
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
2
|
Zhang XY, Fu J, Chen ML, Chen XC, Zhang SM, Luo YL, Fang M, Jiang HW, Chen F, Wang H, He JH, Li Y. Clinicopathological Features of Epstein-Barr Virus-Positive Neuroendocrine Carcinoma: Analysis of Twenty-Two Cases. Endocr Pathol 2024; 35:362-371. [PMID: 39614067 DOI: 10.1007/s12022-024-09837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 12/01/2024]
Abstract
Epstein-Barr Virus (EBV)-positive neuroendocrine carcinoma (NEC) is a rare neoplasm with limited histopathological and therapeutic data. This report presents 22 cases of EBV-positive NEC, analyzing age distribution, morphology, and immunophenotype. The median patient age was 47 years (range: 27-67 years), with a male-to-female ratio of 17:5. Most cases (86%, 19/22) were localized to the nasal cavity or nasopharynx, while the remaining three (14%, 3/22) involved the lung, eyelid, and chest wall. Tumors were identified as small cell neuroendocrine carcinoma (SCNEC) or large cell neuroendocrine carcinoma (LCNEC) based on cellular morphology. Immunohistochemical analysis showed positivity for at least one, but generally, two neuroendocrine markers and INI1, while negativity for NUT and squamous cell carcinoma markers, such as p63, p40, and CK5/6. In situ hybridization consistently revealed EBV early RNAs (EBERs) in all cases. Notably, eight patients benefited from chemoradiotherapy. Recognizing this rare tumor is essential for optimizing treatment strategies.
Collapse
Affiliation(s)
- Xiao-Ying Zhang
- Department of Pathology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jia Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Mei-Ling Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xin-Chun Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Shi-Min Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Yi-Ling Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Mao Fang
- Department of Pathology, Guangzhou Medical University, Guangzhou, 511495, China
| | - Han-Wen Jiang
- Department of Pathology, Yunkang Group Limited, Guangzhou, 510030, Guangdong, China
| | - Fang Chen
- Department of Pathology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Hao Wang
- Department of Pathology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Jin-Hua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China.
| | - Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
3
|
Chen J, Zhao Y, Cheng J, Wang H, Pan S, Liu Y. The Antiviral Potential of Perilla frutescens: Advances and Perspectives. Molecules 2024; 29:3328. [PMID: 39064906 PMCID: PMC11279397 DOI: 10.3390/molecules29143328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses pose a significant threat to human health, causing widespread diseases and impacting the global economy. Perilla frutescens, a traditional medicine and food homologous plant, is well known for its antiviral properties. This systematic review examines the antiviral potential of Perilla frutescens, including its antiviral activity, chemical structure and pharmacological parameters. Utilizing bioinformatics analysis, we revealed the correlation between Perilla frutescens and antiviral activity, identified overlaps between Perilla frutescens target genes and virus-related genes, and explored related signaling pathways. Moreover, a classified summary of the active components of Perilla frutescens, focusing on compounds associated with antiviral activity, provides important clues for optimizing the antiviral drug development of Perilla frutescens. Our findings indicate that Perilla frutescens showed a strong antiviral effect, and its active ingredients can effectively inhibit the replication and spread of a variety of viruses in this review. The antiviral mechanisms of Perilla frutescens may involve several pathways, including enhanced immune function, modulation of inflammatory responses, and inhibition of key enzyme activities such as viral replicase. These results underscore the potential antiviral application of Perilla frutescens as a natural plant and provide important implications for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing Chen
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Yi Zhao
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Jie Cheng
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Haoran Wang
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Shu Pan
- Computer Science School, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
| | - Yuwei Liu
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| |
Collapse
|
4
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Wang Y, Zou Y, Chen X, Wang X, Zheng H, Ye Q. Relevance of pyroptosis-associated genes in nasopharyngeal carcinoma diagnosis and subtype classification. J Gene Med 2024; 26:e3653. [PMID: 38282154 DOI: 10.1002/jgm.3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a highly aggressive and metastatic malignancy originating in the nasopharyngeal tissue. Pyroptosis is a relatively newly discovered, regulated form of necrotic cell death induced by inflammatory caspases that is associated with a variety of diseases. However, the role and mechanism of pyroptosis in NPC are not fully understood. METHODS We analyzed the differential expression of pyroptosis-related genes (PRGs) between patients with and without NPC from the GSE53819 and GSE64634 datasets of the Gene Expression Omnibus (GEO) database. We mapped receptor operating characteristic profiles for these key PRGs to assess the accuracy of the genes for disease diagnosis and prediction of patient prognosis. In addition, we constructed a nomogram based on these key PRGs and carried out a decision curve analysis. The NPC patients were classified into different pyroptosis gene clusters by the consensus clustering method based on key PRGs, whereas the expression profiles of the key PRGs were analyzed by applying principal component analysis. We also analyzed the differences in key PRGs, immune cell infiltration and NPC-related genes between the clusters. Finally, we performed differential expression analysis for pyroptosis clusters and obtained differentially expressed genes (DEGs) and performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. RESULTS We obtained 14 differentially expressed PRGs from GEO database. Based on these 14 differentially expressed PRGs, we applied least absolute shrinkage and selection operator analysis and the random forest algorithm to obtain four key PRGs (CHMP7, IL1A, TP63 and GSDMB). We completely distinguished the NPC patients into two pyroptosis gene clusters (pyroptosis clusters A and B) based on four key PRGs. Furthermore, we determined the immune cell abundance of each NPC sample, estimated the association between the four PRGs and immune cells, and determined the difference in immune cell infiltration between the two pyroptosis gene clusters. Finally, we obtained and functional enrichment analyses 259 DEGs by differential expression analysis for both pyroptosis clusters. CONCLUSIONS PRGs are critical in the development of NPC, and our research on the pyroptosis gene cluster may help direct future NPC therapeutic approaches.
Collapse
Affiliation(s)
- Yan Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yuxia Zou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xianghui Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiaoyan Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology, Fujian Provincial Hospital, Fuzhou, China
| | - Hao Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology, Fujian Provincial Hospital, Fuzhou, China
| | - Qing Ye
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
6
|
Juarez-Vignon Whaley JJ, Afkhami M, Onyshchenko M, Massarelli E, Sampath S, Amini A, Bell D, Villaflor VM. Recurrent/Metastatic Nasopharyngeal Carcinoma Treatment from Present to Future: Where Are We and Where Are We Heading? Curr Treat Options Oncol 2023; 24:1138-1166. [PMID: 37318724 PMCID: PMC10477128 DOI: 10.1007/s11864-023-01101-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/16/2023]
Abstract
OPINION STATEMENT Nasopharyngeal carcinoma (NPC) is distinct in its anatomic location and biology from other epithelial head and neck cancer (HNC). There are 3 WHO subtypes, which considers the presence of Epstein-Barr virus (EBV) and other histopathology features. Despite the survival benefit obtained from modern treatment modalities and techniques specifically in the local and locally advanced setting, a number of patients with this disease will recur and subsequently die of distant metastasis, locoregional relapse, or both. In the recurrent setting, the ideal therapy approach continues to be a topic of discussion and current recommendations are platinum-based combination chemotherapy. Phase III clinical trials which led to the approval of pembrolizumab or nivolumab for head and neck squamous cell carcinoma (HNSCC) specifically excluded NPC. No immune checkpoint inhibitor therapy, to date, has been approved by the FDA to treat NPC although the National Comprehensive Cancer Network (NCCN) recommendations do include use of these agents. Hence, this remains the major challenge for treatment options. Nasopharyngeal carcinoma is challenging as it is really 3 different diseases, and much research is required to determine best options and sequencing of those options. This article is going to address the data to date and discuss ongoing research in EBV + and EBV - inoperable recurrent/metastatic NPC patients.
Collapse
Affiliation(s)
- Juan Jose Juarez-Vignon Whaley
- Health Science Research Center, Faculty of Health Science, Universidad Anahuac Mexico, State of Mexico, Naucalpan de Juárez, Mexico
| | - Michelle Afkhami
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mykola Onyshchenko
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, 1500 East Duarte Road. , Duarte, CA, 91010, USA
| | - Erminia Massarelli
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, 1500 East Duarte Road. , Duarte, CA, 91010, USA
| | - Sagus Sampath
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center Duarte, Duarte, CA, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center Duarte, Duarte, CA, USA
| | - Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Victoria M Villaflor
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, 1500 East Duarte Road. , Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Deng Y, Liu X, Huang Y, Ye J, He Q, Luo Y, Chen Y, Li Q, Lin Y, Liang R, Li Y, Wei J, Zhang J. STIM1-regulated exosomal EBV-LMP1 empowers endothelial cells with an aggressive phenotype by activating the Akt/ERK pathway in nasopharyngeal carcinoma. Cell Oncol (Dordr) 2023; 46:987-1000. [PMID: 36917356 DOI: 10.1007/s13402-023-00790-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Stromal interaction molecule 1 (STIM1)-mediated Ca2+ signaling regulates tumor angiogenesis in nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-related human malignancy. However, the mechanism by which STIM1 modulates endothelial functional phenotypes contributing to tumor angiogenesis remains elusive. METHODS NPC cell-derived exosomes were isolated via differential centrifugation and observed using transmission electron microscopy. Exosome particle sizes were assessed by nanoparticle tracking analysis (NTA). Uptake of exosomes by recipient ECs was detected by fluorescent labeling of the exosomes with PKH26. Tumor angiogenesis-associated profiles were characterized by determining cell proliferation, migration, tubulogenesis and permeability in human umbilical vein endothelial cells (HUVECs). Activation of the Akt/ERK pathway was assessed by detecting the phosphorylation levels using Western blotting. A chick embryo chorioallantoic membrane (CAM) xenograft model was employed to study tumor-associated neovascularization in vivo. RESULTS We found that NPC cell-derived exosomes harboring EBV-encoded latent membrane protein 1 (LMP1) promoted proliferation, migration, tubulogenesis and permeability by activating the Akt/ERK pathway in ECs. STIM1 silencing reduced LMP1 enrichment in NPC cell-derived exosomes, thereby reversing its pro-oncogenic effects in an Akt/ERK pathway-dependent manner. Furthermore, STIM1 knockdown in NPC cells blunted tumor-induced vascular network formation and inhibited intra-tumor neovascularization in the chorioallantoic membrane (CAM) xenograft model. CONCLUSION STIM1 regulates tumor angiogenesis by controlling exosomal EBV-LMP1 delivery to ECs in the NPC tumor microenvironment. Blocking exosome-mediated cell-to-cell horizontal transfer of EBV-associated oncogenic signaling molecules may be an effective therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Xue Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Yue Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Qiuyun Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China.
- Institute of Oncology, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China.
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China.
| |
Collapse
|
8
|
Liao LJ, Hsu WL, Chen CJ, Chiu YL. Feature Reviews of the Molecular Mechanisms of Nasopharyngeal Carcinoma. Biomedicines 2023; 11:1528. [PMID: 37371623 DOI: 10.3390/biomedicines11061528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is rare in most parts of the world but endemic in southern Asia. Here, we describe the molecular abnormalities in NPC and point out potential molecular mechanisms for future therapy. This article provides a brief up-to-date review focusing on the molecular pathways of NPC, which may improve our knowledge of this disease, and we also highlight some issues for further research. In brief, some heritable genes are related to NPC; therefore, people with a family history of NPC have an increased risk of this disease. Carcinogenic substances and Epstein-Barr virus (EBV) exposure both contribute to tumorigenesis through the accumulation of multiple genomic changes. In recent years, salted fish intake has decreased the impact on NPC, which implies that changing exposure to carcinogens can modify the risk of NPC. Eradication of cancer-associated viruses potentially eradicates cancer, and EBV vaccines might also prevent this disease in the future. Screening patients by using an EBV antibody is feasible in the high-risk group; plasma EBV DNA measurement could also be conducted for screening, prognosis, and monitoring of this disease. Understanding the molecular mechanisms of NPC can further provide novel information for health promotion, disease screening, and precision cancer treatment.
Collapse
Affiliation(s)
- Li-Jen Liao
- Department of Otolaryngology Head and Neck Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Wan-Lun Hsu
- Master Program of Big Data Analysis in Biomedicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yen-Ling Chiu
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan 320, Taiwan
| |
Collapse
|