1
|
Miller MW, Mendoza Quiroz S, Lachs L, Banaszak AT, Chamberland VF, Guest JR, Gutting AN, Latijnhouwers KRW, Sellares-Blasco RI, Virdis F, Villalpando MF, Petersen D. Assisted sexual coral recruits show high thermal tolerance to the 2023 Caribbean mass bleaching event. PLoS One 2024; 19:e0309719. [PMID: 39292637 PMCID: PMC11410220 DOI: 10.1371/journal.pone.0309719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
Assisted sexual coral propagation, resulting in greater genet diversity via genetic recombination, has been hypothesized to lead to more adaptable and, hence, resilient restored populations compared to more common clonal techniques. Coral restoration efforts have resulted in substantial populations of 'Assisted sexual Recruits' (i.e., juvenile corals derived from assisted sexual reproduction; AR) of multiple species outplanted to reefs or held in in situ nurseries across many locations in the Caribbean. These AR populations provided context to evaluate their relative resilience compared to co-occurring coral populations during the 2023 marine heat wave of unprecedented duration and intensity that affected the entire Caribbean. Populations of six species of AR, most ranging in age from 1-4 years, were surveyed across five regions during the mass bleaching season in 2023 (Aug-Dec), alongside co-occurring groups of corals to compare prevalence of bleaching and related mortality. Comparison groups included conspecific adult colonies as available, but also the extant co-occurring coral assemblages in which conspecifics were rare or lacking, as well as small, propagated coral fragments. Assisted sexual recruits had significantly lower prevalence of bleaching impacts (overall pooled ~ 10%) than conspecific coral populations typically comprised of larger colonies (~ 60-100% depending on species). In addition, small corals derived from fragmentation (rather than sexual propagation) in two regions showed bleaching susceptibility intermediate between AR and wild adults. Overall, AR exhibited high bleaching resistance under heat stress exposure up to and exceeding Degree Heating Weeks of 20°C-weeks. As coral reefs throughout the globe are subject to increasingly frequent and intense marine heatwaves, restoration activities that include sexual reproduction and seeding can make an important contribution to sustain coral populations.
Collapse
Affiliation(s)
| | - Sandra Mendoza Quiroz
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anastazia T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Valérie F Chamberland
- SECORE International, Miami, FL, United States of America
- CARMABI Foundation, Willemstad, Curaçao
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Kelly R W Latijnhouwers
- SECORE International, Miami, FL, United States of America
- CARMABI Foundation, Willemstad, Curaçao
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Francesca Virdis
- Reef Renewal Foundation Bonaire (RRFB), Bonaire, Caribbean Netherlands
| | - Maria F Villalpando
- Fundación Dominicana de Estudios Marinos (FUNDEMAR), Bayahíbe, Dominican Republic
| | - Dirk Petersen
- SECORE International, Miami, FL, United States of America
| |
Collapse
|
2
|
Medellín-Maldonado F, Cruz-Ortega I, Pérez-Cervantes E, Norzogaray-López O, Carricart-Ganivet JP, López-Pérez A, Alvarez-Filip L. Newly deceased Caribbean reef-building corals experience rapid carbonate loss and colonization by endolithic organisms. Commun Biol 2023; 6:934. [PMID: 37699971 PMCID: PMC10497637 DOI: 10.1038/s42003-023-05301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Coral mortality triggers the loss of carbonates fixed within coral skeletons, compromising the reef matrix. Here, we estimate rates of carbonate loss in newly deceased colonies of four Caribbean reef-building corals. We use samples from living and recently deceased colonies following a stony coral tissue loss disease (SCTLD) outbreak. Optical densitometry and porosity analyses reveal a loss of up to 40% of the calcium carbonate (CaCO3) content in dead colonies. The metabolic activity of the endolithic organisms colonizing the dead skeletons is likely partially responsible for the observed dissolution. To test for the consequences of mass mortality events over larger spatial scales, we integrate our estimates of carbonate loss with field data of the composition and size structure of coral communities. The dissolution rate depends on the relative abundance of coral species and the structural properties of their skeletons, yet we estimate an average reduction of 1.33 kg CaCO3 m-2, nearly 7% of the total amount of CaCO3 sequestered in the entire system. Our findings highlight the importance of including biological and chemical processes of CaCO3 dissolution in reef carbonate budgets, particularly as the impacts of global warming, ocean acidification, and disease likely enhance dissolution processes.
Collapse
Affiliation(s)
- Francisco Medellín-Maldonado
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, Ciudad de México, Mexico.
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico.
- Laboratorio de Arrecifes y Biodiversidad, Universidad Autónoma Metropolitana, 09340, Ciudad de México, Mexico.
| | - Israel Cruz-Ortega
- Laboratorio de Esclerocronología de Corales Arrecifales, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico
| | - Esmeralda Pérez-Cervantes
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, Ciudad de México, Mexico
| | - Orion Norzogaray-López
- Instituto de Investigaciones Oceanológicas y Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, 22860, Ensenada, BC, Mexico
| | - Juan P Carricart-Ganivet
- Laboratorio de Esclerocronología de Corales Arrecifales, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico
| | - Andrés López-Pérez
- Laboratorio de Arrecifes y Biodiversidad, Universidad Autónoma Metropolitana, 09340, Ciudad de México, Mexico
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico
| |
Collapse
|
3
|
Mendoza Quiroz S, Tecalco Renteria R, Ramírez Tapia GG, Miller MW, Grosso-Becerra MV, Banaszak AT. Coral affected by stony coral tissue loss disease can produce viable offspring. PeerJ 2023; 11:e15519. [PMID: 37465157 PMCID: PMC10351504 DOI: 10.7717/peerj.15519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/16/2023] [Indexed: 07/20/2023] Open
Abstract
Stony coral tissue loss disease (SCTLD) has caused high mortality of at least 25 coral species across the Caribbean, with Pseudodiploria strigosa being the second most affected species in the Mexican Caribbean. The resulting decreased abundance and colony density reduces the fertilization potential of SCTLD-susceptible species. Therefore, larval-based restoration could be of great benefit, though precautionary concerns about disease transmission may foster reluctance to implement this approach with SCTLD-susceptible species. We evaluated the performance of offspring obtained by crossing gametes of a healthy P. strigosa colony (100% apparently healthy tissue) with that of a colony affected by SCTLD (>50% tissue loss) and compared these with prior crosses between healthy parents. Fertilization and settlement were as high as prior crosses among healthy parents, and post-settlement survivorship over a year in outdoor tanks was 7.8%. After thirteen months, the diseased-parent recruits were outplanted to a degraded reef. Their survivorship was ∼44% and their growth rate was 0.365 mm ± 1.29 SD per month. This study shows that even diseased parent colonies can be effective in assisted sexual reproduction for the restoration of species affected by SCTLD.
Collapse
Affiliation(s)
- Sandra Mendoza Quiroz
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Raúl Tecalco Renteria
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Gandhi Germán Ramírez Tapia
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | - Maria Victoria Grosso-Becerra
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
4
|
Caballero‐Aragón H, Perera‐Valderrama S, Cerdeira‐Estrada S, Martell‐Dubois R, Rosique‐de la Cruz L, Álvarez‐Filip L, Pérez‐Cervantes E, Estrada‐Saldivar N, Ressl R. Dataset of coral reefs monitoring, Puerto Morelos, Mexico, 2019. Data Brief 2022; 42:108253. [PMID: 35599817 PMCID: PMC9117548 DOI: 10.1016/j.dib.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022] Open
Abstract
Noticeable within the Mexican Caribbean is the Arrecife de Puerto Morelos National Park (APMNP), a marine protected area established as an essential component for managing and protecting coral reefs. In June 2019, we conducted a survey in eight shallow reef sites of the APMNP with the purpose of applying a coral reef assessment method, based on biological indicators of the condition of both benthos and fish communities. In this paper we present tables with data of biological and ecological variables such as: benthos coverage, species composition and abundance of corals, abundance of urchins and coral recruits, bleaching, coral diseases and coral mortality percent, reef relief, and composition and abundance of key commercial and herbivorous fish species. The research article related to these databases was published in the journal Diversity with the title: Puerto Morelos coral reefs, current state and their classification by a scoring system.
Collapse
|
5
|
Monroy-Velázquez LV, Rodríguez-Martínez RE, Blanchon P, Alvarez F. The use of artificial substrate units to improve inventories of cryptic crustacean species on Caribbean coral reefs. PeerJ 2020; 8:e10389. [PMID: 33282560 PMCID: PMC7690294 DOI: 10.7717/peerj.10389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/27/2020] [Indexed: 12/05/2022] Open
Abstract
Motile cryptofauna inhabiting coral reefs are complex assemblages that utilize the space available among dead coral stands and the surrounding coral rubble substrate. They comprise a group of organisms largely overlooked in biodiversity estimates because they are hard to collect and identify, and their collection causes disturbance that is unsustainable in light of widespread reef degradation. Artificial substrate units (ASUs) provide a better sampling alternative and have the potential to enhance biodiversity estimates. The present study examines the effectiveness of ASUs made with defaunated coral rubble to estimate the diversity of motile cryptic crustaceans in the back-reef zone of the Puerto Morelos Reef National Park, Mexico. Species richness, Simpson’s diversity index, Shannon–Wiener index and the composition of assemblages were compared between ASUs and samples from the surrounding coral rubble substrate. A combined total of 2,740 specimens of 178 different species, belonging to five orders of Crustacea (Amphipoda, Cumacea, Isopoda, Tanaidacea and Decapoda) were collected. Species richness was higher in the surrounding coral rubble and Shannon–Wiener and Simpson indexes were higher in ASUs. Species composition differed between methods, with only 71 species being shared among sampling methods. Decapoda was more speciose in ASUs and Peracarids in the surrounding coral rubble. Combining the use of ASUs with surrounding rubble provided a better inventory of motile cryptic crustacean biodiversity, as 65% of the species were represented by one or two specimens.
Collapse
Affiliation(s)
- Luz Verónica Monroy-Velázquez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Rosa E Rodríguez-Martínez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Paul Blanchon
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Fernando Alvarez
- Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico City, México
| |
Collapse
|
6
|
A New Long-Term Marine Biodiversity Monitoring Program for the Knowledge and Management in Marine Protected Areas of the Mexican Caribbean. SUSTAINABILITY 2020. [DOI: 10.3390/su12187814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the Mexican Caribbean, 15 marine protected areas (MPAs) have been established for managing and protecting marine ecosystems. These MPAs receive high anthropogenic pressure from coastal development, tourism, and fishing, all in synergy with climate change. To contribute to the MPAs’ effectiveness, it is necessary to provide a long-term observation system of the condition of marine ecosystems and species. Our study proposes the establishment of a new marine biodiversity monitoring program (MBMP) focusing on three MPAs of the Mexican Caribbean. Five conservation objects (COs) were defined (coral reefs, seagrass beds, mangroves, marine turtles, and sharks-rays) for their ecological relevance and the pressures they are facing. Coral reef, seagrass and mangroves have multiple biological, biogeochemical and physical interactions. Marine turtles are listed as endangered species, and the status of their populations is unknown in the marine area of the MPAs. Elasmobranchs play a key role as top and medium predators, and their populations have been poorly studied. Indicators were proposed for monitoring each CO. As a technological innovation, all information obtained from the MBMP will be uploaded to the Coastal Marine Information and Analysis System (SIMAR), a public, user-friendly and interactive web platform that allows for automatic data management and processing.
Collapse
|