1
|
Simulating the Effects of Intensifying Silviculture on Desired Species Yields across a Broad Environmental Gradient. FORESTS 2021. [DOI: 10.3390/f12060755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the past two decades, forest management has undergone major paradigm shifts that are challenging the current forest modelling architecture. New silvicultural systems, guidelines for natural disturbance emulation, a desire to enhance structural complexity, major advances in successional theory, and climate change have all highlighted the limitations of current empirical models in covering this range of conditions. Mechanistic models, which focus on modelling underlying ecological processes rather than specific forest conditions, have the potential to meet these new paradigm shifts in a consistent framework, thereby streamlining the planning process. Here we use the NEBIE (a silvicultural intervention scale that classifies management intensities as natural, extensive, basic, intensive, and elite) plot network, from across Ontario, Canada, to examine the applicability of a mechanistic model, ZELIG-CFS (a version of the ZELIG tree growth model developed by the Canadian Forest Service), to simulate yields and species compositions. As silvicultural intensity increased, overall yield generally increased. Species compositions met the desired outcomes when specific silvicultural treatments were implemented and otherwise generally moved from more shade-intolerant to more shade-tolerant species through time. Our results indicated that a mechanistic model can simulate complex stands across a range of forest types and silvicultural systems while accounting for climate change. Finally, we highlight the need to improve the modelling of regeneration processes in ZELIG-CFS to better represent regeneration dynamics in plantations. While fine-tuning is needed, mechanistic models present an option to incorporate adaptive complexity into modelling forest management outcomes.
Collapse
|
2
|
Satellite Based Fraction of Absorbed Photosynthetically Active Radiation Is Congruent with Plant Diversity in India. REMOTE SENSING 2021. [DOI: 10.3390/rs13020159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A dynamic habitat index (DHI) based on satellite derived biophysical proxy (fraction of absorbed photosynthetically active radiation, FAPAR) was used to evaluate the vegetation greenness pattern across deserts to alpine ecosystems in India that account to different biodiversity. The cumulative (DHI-cum), minimum (DHI-min), and seasonal (DHI-sea) DHI were generated using Moderate Resolution Imaging Spectroradiometer (MODIS)-based FAPAR. The higher DHI-cum and DHI-min represented the biodiversity hotspots of India, whereas the DHI-sea was higher in the semi-arid, the Gangetic plain, and the Deccan peninsula. The arid and the trans-Himalaya are dominated with grassland or barren land exhibit very high DHI-sea. The inter-year correlation demonstrated an increase in vegetation greenness in the semi-arid region, and continuous reduction in greenness in the Northeastern region. The DHI components validated using field-measured plant richness data from four biogeographic regions (semi-arid, eastern Ghats, the Western Ghats, and Northeast) demonstrated good congruence. DHI-cum that represents the annual greenness strongly correlated with the plant richness (R2 = 0.90, p-value < 0.001), thereby emerging as a suitable indicator for assessing plant richness in large-scale biogeographic studies. Overall, the FAPAR-based DHI components across Indian biogeographic regions provided understanding of natural variability of the greenness pattern and its congruence with plant diversity.
Collapse
|
3
|
Campeau AB, Rickbeil GJM, Coops NC, Côté SD. Long-term changes in the primary productivity of migratory caribou (Rangifer tarandus) calving grounds and summer pasture on the Quebec-Labrador Peninsula (Northeastern Canada): the mixed influences of climate change and caribou herbivory. Polar Biol 2019. [DOI: 10.1007/s00300-019-02492-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Abstract
At present, 10.5% of Canada’s land base is under some form of formal protection. Recent developments indicate Canada aims to work towards a target of protecting 17% of its terrestrial and inland water area by 2020. Canada is uniquely positioned globally as one of the few nations that has the capacity to expand the area under its protection. In addition to its formally protected areas, Canada’s remote regions form de facto protected areas that are relatively free from development pressure. Opportunities for expansion of formally protected areas in Canada include official delineation and designation of de facto protected areas and the identification and protection of land to improve connectivity between protected areas (PAs). Furthermore, there are collaborative opportunities for expanding PA through commitments from industry and provincial and territorial land stewards. Other collaborative opportunities include the contributions of First Nations aligning with international examples of Indigenous Protected Areas, or the incorporation and cultivation of private protection programs with documented inclusion in official PA networks. A series of incremental additions from multiple actors may increase the likelihood for achieving area-based targets, and expands stakeholder engagement and representation in Canada’s PA system. Given a generational opportunity and high-level interest in expansion of protected areas in Canada and elsewhere, it is evident that as a diverse number of stakeholders and rights holders collaboratively map current and future land uses onto forest landscapes, science-based conservation targets and spatial prioritizations can inform this process.
Collapse
|
5
|
Gaudreau J, Perez L, Drapeau P. BorealFireSim: A GIS-based cellular automata model of wildfires for the boreal forest of Quebec in a climate change paradigm. ECOL INFORM 2016. [DOI: 10.1016/j.ecoinf.2015.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Stralberg D, Bayne EM, Cumming SG, Sólymos P, Song SJ, Schmiegelow FKA. Conservation of future boreal forest bird communities considering lags in vegetation response to climate change: a modified refugia approach. DIVERS DISTRIB 2015. [DOI: 10.1111/ddi.12356] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Diana Stralberg
- Department of Biological Sciences; University of Alberta; CW 405, Biological Sciences Building Edmonton AB T6G 2E9 Canada
| | - Erin M. Bayne
- Department of Biological Sciences; University of Alberta; CW 405, Biological Sciences Building Edmonton AB T6G 2E9 Canada
| | - Steven G. Cumming
- Département des sciences du bois et de la forêt; Université Laval; Pavillon Abitibi-Price, Local 2130 Québec QC G1V 0A6 Canada
| | - Péter Sólymos
- Department of Biological Sciences; University of Alberta; CW 405, Biological Sciences Building Edmonton AB T6G 2E9 Canada
| | - Samantha J. Song
- Canadian Wildlife Service; Environment Canada; 9250-49th Street Edmonton AB T6B 1K5 Canada
| | - Fiona K. A. Schmiegelow
- Northern ENCS Program; Department of Renewable Resources; University of Alberta; c/o Yukon College Whitehorse YT Y1A 5K4 Canada
| |
Collapse
|