1
|
Sugiura K, Kawasaki H, Egami T, Kaneko M, Ishida N, Tamura S, Tani S, Yamade M, Hamaya Y, Osawa S, Takeuchi H, Baba S, Sugimoto K, Iwaizumi M. Iron deposition in gastric black spots: Clinicopathological insights and NanoSuit-correlative light and electron microscopy analysis. DEN OPEN 2025; 5:e398. [PMID: 38895560 PMCID: PMC11182783 DOI: 10.1002/deo2.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVES Black spots (BSs) are lentiginous findings observed in the gastric body and fundus during upper gastrointestinal endoscopy and are predominantly seen in patients undergoing Helicobacter pylori eradication treatment. However, the detailed patient background and exact composition are poorly understood. This study aims to clarify the clinicopathological features of BSs, examine patient demographics, and use the NanoSuit-correlative light and electron microscopy (CLEM) method combined with scanning electron microscopy-energy dispersive X-ray spectroscopy for elemental analysis. METHODS Patients who underwent upper gastrointestinal endoscopy between 2017 and 2022 were included. Data on age, medications, blood tests, and H. pylori infection status were retrospectively gathered from medical records. Univariate analysis was conducted to examine BS presence, with results then used in a multivariate model to identify associated risk factors. Additionally, pathological specimens from patients with BSs were analyzed for elemental composition using the NanoSuit-CLEM method combined with scanning electronmicroscopy-energy dispersive X-ray spectroscopy. RESULTS An analysis of 6778 cases identified risk factors for BSs, including older age and using proton pump inhibitors, statins, corticosteroids, and antithrombotic drugs. Endoscopically, BSs correlated with higher gastric atrophy and lower active H. pylori infection. Iron deposition at BS sites was specifically identified using NanoSuit-CLEM. CONCLUSIONS BSs on gastrointestinal endoscopy may indicate an absence of active H. pylori inflammation. The discovery of iron deposition within BSs using the NanoSuit-CLEM method has offered new insights into the possible causative factors and advances our understanding of the etiology of BSs, bringing us closer to unraveling the underlying mechanisms of their formation.
Collapse
Affiliation(s)
- Kiichi Sugiura
- First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Hideya Kawasaki
- Institute for NanoSuit ResearchPreeminent Medical Photonics Education and Research CenterHamamatsu University School of MedicineShizuokaJapan
| | - Takatoshi Egami
- First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Masanao Kaneko
- First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Natsuki Ishida
- First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Satoshi Tamura
- First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Shinya Tani
- First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Mihoko Yamade
- First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Yasushi Hamaya
- First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Hiroya Takeuchi
- Department of SurgeryHamamatsu University School of MedicineShizuokaJapan
| | - Satoshi Baba
- Department of Diagnostic PathologyHamamatsu University School of MedicineShizuokaJapan
| | - Ken Sugimoto
- First Department of MedicineHamamatsu University School of MedicineShizuokaJapan
| | - Moriya Iwaizumi
- Department of Laboratory MedicineHamamatsu University School of MedicineShizuokaJapan
| |
Collapse
|
2
|
Ohta K, Ito M, Chida T, Nakashima K, Sakai S, Kanegae Y, Kawasaki H, Aoshima T, Takabayashi S, Takahashi H, Kawata K, Shoji I, Sawasaki T, Suda T, Suzuki T. Role of hepcidin upregulation and proteolytic cleavage of ferroportin 1 in hepatitis C virus-induced iron accumulation. PLoS Pathog 2023; 19:e1011591. [PMID: 37585449 PMCID: PMC10461841 DOI: 10.1371/journal.ppat.1011591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/28/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatitis C virus (HCV) is a pathogen characterized not only by its persistent infection leading to the development of cirrhosis and hepatocellular carcinoma (HCC), but also by metabolic disorders such as lipid and iron dysregulation. Elevated iron load is commonly observed in the livers of patients with chronic hepatitis C, and hepatic iron overload is a highly profibrogenic and carcinogenic factor that increases the risk of HCC. However, the underlying mechanisms of elevated iron accumulation in HCV-infected livers remain to be fully elucidated. Here, we observed iron accumulation in cells and liver tissues under HCV infection and in mice expressing viral proteins from recombinant adenoviruses. We established two molecular mechanisms that contribute to increased iron load in cells caused by HCV infection. One is the transcriptional induction of hepcidin, the key hormone for modulating iron homeostasis. The transcription factor cAMP-responsive element-binding protein hepatocyte specific (CREBH), which was activated by HCV infection, not only directly recognizes the hepcidin promoter but also induces bone morphogenetic protein 6 (BMP6) expression, resulting in an activated BMP-SMAD pathway that enhances hepcidin promoter activity. The other is post-translational regulation of the iron-exporting membrane protein ferroportin 1 (FPN1), which is cleaved between residues Cys284 and Ala285 in the intracytoplasmic loop region of the central portion mediated by HCV NS3-4A serine protease. We propose that host transcriptional activation triggered by endoplasmic reticulum stress and FPN1 cleavage by viral protease work in concert to impair iron efflux, leading to iron accumulation in HCV-infected cells.
Collapse
Affiliation(s)
- Kazuyoshi Ohta
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Chida
- Department of Regional Medical Care Support, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yumi Kanegae
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takuya Aoshima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Kazuhito Kawata
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Takafumi Suda
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
3
|
Yamada S, Itoh T, Ikegami T, Imai A, Mochizuki D, Nakanishi H, Ishikawa R, Kita J, Nakamura Y, Takizawa Y, Okamura J, Noda Y, Iwashita T, Hariyama T, Suzuki M, Misawa K, Kawasaki H. Association between human papillomavirus particle production and the severity of recurrent respiratory papillomatosis. Sci Rep 2023; 13:5514. [PMID: 37024540 PMCID: PMC10079853 DOI: 10.1038/s41598-023-32486-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Recurrent respiratory papillomatosis (RRP) has a wide range of severity. We investigate the relationship between human papillomavirus (HPV) particle production and severity of RRP. From September 2005 to June 2021, 68 RRP samples (from 29 patients) were included. HPV type was determined. HPV viral load, physical status, and demographic and clinical characteristics were assessed. Immunohistochemistry (IHC) was performed for p16, Ki-67, L1, and E4. We used NanoSuit-CLEM (correlative light and electron microscopy) and transmission electron microscopy (TEM) to examine the samples. The total number of surgeries in HPV-positive and HPV-negative cases were 3.78 (n = 55/68, range: 1-16) and 1.30 (n = 13/68, range: 1-3), respectively (p = 0.02). IHC showed that L1 and E4 were correlated and expressed on the tumour surface. NanoSuit-CLEM and TEM revealed HPV particles in L1-positive nuclei. L1 IHC-positive cases had a shorter surgical interval (p < 0.01) and more frequent surgeries (p = 0.04). P16 IHC, viral load, and physical status were not associated with disease severity. This study visualised HPV particle production in RRP for the first time. Persistent HPV particle infection was associated with severity. We suggest L1 IHC for evaluating RRP severity in addition to the Derkay score.
Collapse
Affiliation(s)
- Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Toshiya Itoh
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taro Ikegami
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hiroshi Nakanishi
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Junya Kita
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuki Nakamura
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yoshinori Takizawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Jun Okamura
- Department of Otorhinolaryngology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yoshihiro Noda
- Department of Otorhinolaryngology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiko Hariyama
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mikio Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
4
|
Identifying Active Progeny Virus Particles in Formalin-Fixed, Paraffin-Embedded Sections Using Correlative Light and Scanning Electron Microscopy. J Transl Med 2023; 103:100020. [PMID: 36748195 DOI: 10.1016/j.labinv.2022.100020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/18/2023] Open
Abstract
Immunohistochemical analysis of formalin-fixed paraffin-embedded (FFPE) tissue blocks is routinely used to identify virus-infected cells. However, detecting virus particles in FFPE sections using light microscopy is difficult because of the light diffraction resolution limitations of an optical microscope. In this study, light microscopy and field emission scanning electron microscopy were performed to observe 3-dimensional virus particles in FFPE sections in a nondestructive manner using NanoSuit or osmium conductive treatment methods. The virus particles in FFPE sections were immunostained with specific antibodies against the surface antigens of the viral particles and stained with 3,3'-diaminobenzidine. A metal solution (0.2% gold chloride or 2% osmium tetroxide) was applied to enhance the 3,3'-diaminobenzidine-stained area. This procedure is nondestructive for FFPE sections and is a simpler method than transmission electron microscopy. To validate the applicability of this technique, we performed 3-dimensional imaging of the virus particles of different sizes, such as human papillomavirus, cytomegalovirus, and varicella-zoster virus. Furthermore, ultrathin sections from the FFPE sections that were observed to harbor viral particles using field emission scanning electron microscopy were prepared and assessed using transmission electron microscopy. In the correlative areas, transmission electron microscopy confirmed the presence of large numbers of virus particles. These results indicated that the combination of marking viral particles with 3,3'-diaminobenzidine/metal staining and conductive treatment can identify active progeny virus particles in FFPE sections using scanning electron microscopy. This easy correlative imaging of field emission scanning electron microscopy of the identical area of FFPE in light microscopy may help elucidate new pathological mechanisms of virus-related diseases.
Collapse
|
5
|
Kim KW. Biological applications of the NanoSuit for electron imaging and X-microanalysis of insulating specimens. Appl Microsc 2022; 52:4. [PMID: 35543835 PMCID: PMC9095807 DOI: 10.1186/s42649-022-00073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/10/2022] Open
Abstract
Field emission scanning electron microscopy (FESEM) is an essential tool for observing surface details of specimens in a high vacuum. A series of specimen procedures precludes the observations of living organisms, resulting in artifacts. To overcome these problems, Takahiko Hariyama and his colleagues proposed the concept of the "nanosuit" later referred to as "NanoSuit", describing a thin polymer layer placed on organisms to protect them in a high vacuum in 2013. The NanoSuit is formed rapidly by (i) electron beam irradiation, (ii) plasma irradiation, (iii) Tween 20 solution immersion, and (iv) surface shield enhancer (SSE) solution immersion. Without chemical fixation and metal coating, the NanoSuit-formed specimens allowed structural preservation and accurate element detection of insulating, wet specimens at high spatial resolution. NanoSuit-formed larvae were able to resume normal growth following FESEM observation. The method has been employed to observe unfixed and uncoated bacteria, multicellular organisms, and paraffin sections. These results suggest that the NanoSuit can be applied to prolong life in vacuo and overcome the limit of dead imaging of electron microscopy.
Collapse
Affiliation(s)
- Ki Woo Kim
- Department of Ecology and Environmental System, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
6
|
Kawasaki H, Suzuki H, Furuhashi K, Yamashita K, Ishikawa J, Nagura O, Maekawa M, Miwa T, Tandou T, Hariyama T. Highly Sensitive and Quantitative Diagnosis of SARS-CoV-2 Using a Gold/Platinum Particle-Based Lateral Flow Assay and a Desktop Scanning Electron Microscope. Biomedicines 2022; 10:biomedicines10020447. [PMID: 35203656 PMCID: PMC8962435 DOI: 10.3390/biomedicines10020447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/23/2022] Open
Abstract
The gold standard test for identifying SARS-CoV-2, the causative agent of COVID-19, is polymerase chain reaction (PCR). Despite their limited sensitivity, SARS-CoV-2 antigen rapid diagnostic tests are vital tools in the fight against viral spread. Owing to its simplicity and low cost, the lateral flow assay (LFA) is the most extensively used point-of-care diagnostic test. Here, we report a newly designed LFA-NanoSuit method (LNSM) that works in conjunction with desktop scanning electron microscopy (SEM) to detect SARS-CoV-2. LNSM requires no standard SEM treatment, avoids cellulose and residual buffer deformation, and enables the capture of high-resolution images of antibody-labeled gold/platinum particles reacting with SARS-CoV-2 antigens. To assess its applicability, we compared clinical SARS-CoV-2 samples via visual detection of LFA, LSNM detection of LFA, and real-time reverse transcription-PCR (qRT-PCR). Compared to qRT-PCR, LNSM showed 86.7% sensitivity (26/30; 95% confidence interval (CI): 69.28–96.24%) and 93.3% specificity (14/15; 95% CI: 68.05–99.83%) for SARS-CoV-2. In samples with a relatively low SARS-CoV-2 RNA copy number (30 < Ct ≤ 40), the sensitivity of LNSM was greater (73.3%) than that of visual detection (0%). A simple, sensitive, and quantitative LNSM can be used to diagnose SARS-CoV-2.
Collapse
Affiliation(s)
- Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (H.S.); (T.H.)
- Correspondence: ; Tel.: +81-53-435-2504
| | - Hiromi Suzuki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (H.S.); (T.H.)
| | - Kazuki Furuhashi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Keita Yamashita
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Jinko Ishikawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Osanori Nagura
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Takafumi Miwa
- Research & Development Group, Hitachi Ltd., 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan;
| | - Takumi Tandou
- Social Solution Department, Hitachi Social Information Services Ltd., Omori Bellport D 17F, 6-26-3, Minamioi, Shinagawa-ku, Tokyo 140-0013, Japan;
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (H.S.); (T.H.)
- NanoSuit Inc., 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
7
|
Surface Characterization of New Azulene-Based CMEs for Sensing. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Films of 2-(azulen-1-yldiazenyl)-5-phenyl-1,3,4-thiadiazole (T) were successfully deposited on glassy carbon surfaces to prepare chemically modified electrodes (CMEs). Their surface characterization was analyzed by electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). This complexing monomer has been deposited through direct electropolymerization in conditions established during the electrochemical characterization of T performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and rotating disk electrode voltammetry (RDE). These methods put in evidence the high degree of asymmetry of oxidation and reduction curves, which is due to the irreversible processes occurring at opposite potentials. The film formation was confirmed by ferrocene redox assay probe. The properties of the electrodes modified with T (T-CMEs) were investigated for sensing heavy metal (HM) ions in water solutions, with promising results for Pb(II) among Cd(II), Cu(II), and Hg(II) ions.
Collapse
|
8
|
Ooishi M, Yamada S, Itoh T, Meguro S, Yagi H, Kosugi I, Iwashita T, Shinmura K, Misawa K, Hariyama T, Kawasaki H. Diagnosis of Ion-Exchange Resin Depositions in Paraffin Sections Using Corrective Light and Electron Microscopy-NanoSuit Method. Diagnostics (Basel) 2021; 11:diagnostics11071193. [PMID: 34209027 PMCID: PMC8304092 DOI: 10.3390/diagnostics11071193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
Ion-exchange resins are commonly used to treat complications such as hyperkalemia, hyperphosphatemia, and hypercholesterolemia. Gastrointestinal complications may occur as side effects of such treatments. Sodium and calcium polystyrene sulfonate (PS-Ca) are cation-exchange resins comprising an insoluble structure that binds to potassium ions in the digestive tract and exchanges them with sodium and calcium ions, respectively, to promote their elimination. PS crystals are rhomboid, refractive, and basophilic in hematoxylin and eosin staining. To differentiate PS crystals from other ion-exchange resin crystals such as sevelamer and cholestyramine, periodic acid-Schiff, Ziehl-Neelsen, and Congo red staining are usually performed. Here, correlative light and electron microscopy (CLEM)-energy-dispersive X-ray spectroscopy and the NanoSuit method (CENM) was applied to perform a definitive identification of ion-exchange resins. CENM could detect sulfur in PS crystals without destroying the glass slides. Notably, PS retained its ion-exchange ability to bind potassium in paraffin sections. Differential diagnosis of anion-exchange resins, such as sevelamer and cholestyramine, was possible using these characteristics. The phosphorus:carbon ratio was higher in sevelamer than in cholestyramine after soaking paraffin sections in a phosphate solution. Therefore, CENM may be used for the differential pathological diagnosis of ion-exchange resins in paraffin sections.
Collapse
Affiliation(s)
- Mako Ooishi
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan; (M.O.); (T.H.)
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan; (S.Y.); (K.M.)
| | - Toshiya Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan;
| | - Shiori Meguro
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan; (S.M.); (H.Y.); (I.K.); (T.I.)
| | - Haruna Yagi
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan; (S.M.); (H.Y.); (I.K.); (T.I.)
| | - Isao Kosugi
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan; (S.M.); (H.Y.); (I.K.); (T.I.)
| | - Toshihide Iwashita
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan; (S.M.); (H.Y.); (I.K.); (T.I.)
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan;
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan; (S.Y.); (K.M.)
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan; (M.O.); (T.H.)
| | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan; (M.O.); (T.H.)
- Correspondence: ; Tel.: +81-53-435-2504
| |
Collapse
|
9
|
Shinmura K, Kusafuka K, Kawasaki H, Kato H, Hariyama T, Tsuchiya K, Kawanishi Y, Funai K, Misawa K, Mineta H, Sugimura H. Identification and characterization of primary cilia-positive salivary gland tumours exhibiting basaloid/myoepithelial differentiation. J Pathol 2021; 254:519-530. [PMID: 33931860 DOI: 10.1002/path.5688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Primary cilia (PC) are non-motile, antenna-like structures on the cell surface. Many types of neoplasms exhibit PC loss, whereas in some neoplasms PC are retained and involved in tumourigenesis. To elucidate the PC status and characteristics of major salivary gland tumours (SGTs), we examined 100 major SGTs encompassing eight histopathological types by immunohistochemical analysis. PC were present in all (100%) of the pleomorphic adenomas (PAs), basal cell adenomas (BCAs), adenoid cystic carcinomas (AdCCs), and basal cell adenocarcinomas (BCAcs) examined, but absent in all (0%) of the Warthin tumours, salivary duct carcinomas, mucoepidermoid carcinomas, and acinic cell carcinomas examined. PC were also detected by electron-microscopic analysis using the NanoSuit method. It is worthy of note that the former category and latter category of tumours contained and did not contain a basaloid/myoepithelial differentiation component, respectively. The four types of PC-positive SGTs showed longer PC than normal and exhibited a characteristic distribution pattern of the PC in the ductal and basaloid/neoplastic myoepithelial components. Two PC-positive carcinomas (AdCC and BCAc) still possessed PC in their recurrent/metastatic sites. Interestingly, activation of the Hedgehog signalling pathway, shown by predominantly nuclear GLI1 expression, was significantly more frequently observed in PC-positive SGTs. Finally, we identified tau tubulin kinase 2 (TTBK2) as being possibly involved in the production of PC in SGTs. Taken together, our findings indicate that SGTs that exhibit basaloid/myoepithelial differentiation (PA, BCA, AdCC, and BCAc) are ciliated, and their PC exhibit tumour-specific characteristics, are involved in activation of the Hedgehog pathway, and are associated with TTBK2 upregulation, providing a significant and important link between SGT tumourigenesis and PC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuichi Kawanishi
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
10
|
Olshan KL, Leonard MM, Serena G, Zomorrodi AR, Fasano A. Gut microbiota in Celiac Disease: microbes, metabolites, pathways and therapeutics. Expert Rev Clin Immunol 2020; 16:1075-1092. [PMID: 33103934 DOI: 10.1080/1744666x.2021.1840354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Current evidence supports a vital role of the microbiota on health outcomes, with alterations in an otherwise healthy balance linked to chronic medical conditions like celiac disease (CD). Recent advances in microbiome analysis allow for unparalleled profiling of the microbes and metabolites. With the growing volume of data available, trends are emerging that support a role for the gut microbiota in CD pathogenesis. AREAS COVERED In this article, the authors review the relationship between factors such as genes and antibiotic exposure on CD onset and the intestinal microbiota. The authors also review other microbiota within the human body (like the oropharynx) that may play a role in CD pathogenesis. Finally, the authors discuss implications for disease modification and the ultimate goal of prevention. The authors reviewed literature from PubMed, EMBASE, and Web of Science. EXPERT OPINION CD serves as a unique opportunity to explore the role of the intestinal microbiota on the development of chronic autoimmune disease. While research to date provides a solid foundation, most studies have been case-control and thus do not have capacity to explore the mechanistic role of the microbiota in CD onset. Further longitudinal studies and integrated multi-omics are necessary for investigating CD pathogenesis.
Collapse
Affiliation(s)
- Katherine L Olshan
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Ali R Zomorrodi
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,European Biomedical Research Institute of Salerno (EBRIS) , Salerno, Italy
| |
Collapse
|
11
|
Hariyama T, Takaku Y, Senoh C, Yamada S, Itoh T, Suzuki C, Takehara S, Hirakawa S, Kawasaki H. Living Organisms under an Electron Microscope: the NanoSuit® Method aiming for Medical and Industrial Applications. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|