1
|
Zhao Z, Li H, Li J, Rong Y, Zhao L, Hao M, Tian F. Expression of lncRNA LINC00943 in lung squamous cell carcinoma and its relationship with tumor progression. J Cardiothorac Surg 2024; 19:222. [PMID: 38627774 PMCID: PMC11020474 DOI: 10.1186/s13019-024-02771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Molecular biology has been applied to the diagnosis, prognosis and treatment of various diseases, and long noncoding RNA LINC00943 (lncRNA LINC00943; LINC00943) plays an important role in a variety of cancers. Therefore, this study explored the prognostic role of LINC00943 in lung squamous cell carcinoma (LUSC) and understood its impact on the development of LUSC. METHODS There are 89 LUSC patients were involved in current assay. By detecting the expression of LINC00943 and miR-196b-5p in tissues and cells, LINC00943 and its correlation with the characteristics of clinical data were analyzed. The biological function of LINC00943 was studied by Transwell migration and invasion assays. In addition, Pearson correlation coefficient and luciferase activity experiments were chosen to characterize the relationship between LINC00943 and miR-196b-5p and explore the mechanism of LINC00943. RESULTS Compared with normal controls, LINC00943 expression in LUSC tissues and cells was significantly reduced, miR-196b-5p was markedly increased, there was a negative correlation between LINC00943 and miR-196b-5p. According to the in vitro cell experiments, migration and invasion of LUSC cells were suppressed by overexpression of LINC00943. Besides, LINC00943 was demonstrated to have prognostic power and targeting miR-196b-5p was involved in the progression of LUSC. CONCLUSIONS Overexpression of LINC00943 was molecular sponge for miR-196b-5p that controlled the deterioration of LUSC, which had great potential as a prognostic biomarker for LUSC.
Collapse
Affiliation(s)
- Zhenshan Zhao
- Department of Thoracic Surgery, KaiLuan General Hospital, Tangshan, 063000, Hebei, China
| | - Haiyang Li
- Department of Oncology, KaiLuan General Hospital, No. 57, Xinhua East Road, Tangshan, 063000, Hebei, China.
| | - Jing Li
- Department of Thoracic Surgery, KaiLuan General Hospital, Tangshan, 063000, Hebei, China
| | - Yao Rong
- Department of Thoracic Surgery, KaiLuan General Hospital, Tangshan, 063000, Hebei, China
| | - Lidong Zhao
- Department of Clinical Laboratory, TangShan GongRen Hospital, Tangshan, 063003, Hebei, China
| | - Menghui Hao
- Department of Thoracic Surgery, KaiLuan General Hospital, Tangshan, 063000, Hebei, China
| | - Faming Tian
- Department of College of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| |
Collapse
|
2
|
Role of MicroRNAs in the Development and Progression of the Four Medulloblastoma Subgroups. Cancers (Basel) 2021; 13:cancers13246323. [PMID: 34944941 PMCID: PMC8699467 DOI: 10.3390/cancers13246323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most frequent malignant brain tumour in children. Medulloblastoma originate during the embryonic stage. They are located in the cerebellum, which is the area of the central nervous system (CNS) responsible for controlling equilibrium and coordination of movements. In 2012, medulloblastoma were divided into four subgroups based on a genome-wide analysis of RNA expression. These subgroups are named Wingless, Sonic Hedgehog, Group 3 and Group 4. Each subgroup has a different cell of origin, prognosis, and response to therapies. Wingless and Sonic Hedgehog medulloblastoma are so named based on the main mutation originating these tumours. Group 3 and Group 4 have generic names because we do not know the key mutation driving these tumours. Gene expression at the post-transcriptional level is regulated by a group of small single-stranded non-coding RNAs. These microRNA (miRNAs or miRs) play a central role in several cellular functions such as cell differentiation and, therefore, any malfunction in this regulatory system leads to a variety of disorders such as cancer. The role of miRNAs in medulloblastoma is still a topic of intense clinical research; previous studies have mostly concentrated on the clinical entity of the single disease rather than in the four molecular subgroups. In this review, we summarize the latest discoveries on miRNAs in the four medulloblastoma subgroups.
Collapse
|
3
|
Zhao YN, Li K, Han XS, Pan YW. The mechanism of non-coding RNAs in medulloblastoma. Oncol Lett 2021; 22:758. [PMID: 34539862 PMCID: PMC8436364 DOI: 10.3892/ol.2021.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022] Open
Abstract
Medulloblastoma (MB) is one of the most common malignant tumors of the central nervous system in children. Although surgery, radiotherapy and chemotherapy have resulted in considerable progress in the treatment of this disease, the prognosis of patients with MB remains very poor. Therefore, highly specific molecular targeted treatment, which can improve the therapeutic efficacy and reduce the side effects of MB, has become a research hotspot. In recent years, non-coding RNAs (ncRNAs), which were initially considered to be transcriptional noise, have been shown to possess regulatory functions. A series of ncRNAs have been identified, including microRNAs and circular RNAs, which affect the expression of specific genes in a variety of tumors. These genes lead to the formation of a specific complex of proteins or they directly participate in protein synthesis in order to regulate the occurrence and development of tumors. The aim of the present review article was to summarize the recent research studies that have explored the ability of ncRNAs to regulate the occurrence and development of MB.
Collapse
Affiliation(s)
- Ying-Nan Zhao
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Kun Li
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xing-Sheng Han
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Ya-Wen Pan
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
4
|
Visani M, Marucci G, de Biase D, Giangaspero F, Buttarelli FR, Brandes AA, Franceschi E, Acquaviva G, Ciarrocchi A, Rhoden KJ, Tallini G, Pession A. Correction: Visani et al. miR-196B-5P and miR-200B-3P Are Differentially Expressed in Medulloblastomas of Adults and Children. Diagnostics 2020, 10, 265. Diagnostics (Basel) 2021; 11:1633. [PMID: 34574077 PMCID: PMC8472253 DOI: 10.3390/diagnostics11091633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
The authors wish to make the following corrections to this paper [...].
Collapse
Affiliation(s)
- Michela Visani
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Gianluca Marucci
- Anatomic Pathology Unit, Ospedale Bellaria AUSL-IRCCS of Bologna, 40139 Bologna, Italy;
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBiT), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna, 40138 Bologna, Italy;
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University School of Medicine, 00161 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli (Isernia), Italy
| | | | - Alba Ariela Brandes
- Department of Medical Oncology, Bellaria–Maggiore Hospitals AUSL-IRCCS of Bologna, 40139 Bologna, Italy; (A.A.B.); (E.F.)
| | - Enrico Franceschi
- Department of Medical Oncology, Bellaria–Maggiore Hospitals AUSL-IRCCS of Bologna, 40139 Bologna, Italy; (A.A.B.); (E.F.)
| | - Giorgia Acquaviva
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova AUSL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Kerry Jane Rhoden
- Department of Medical and Surgical Sciences, Medical Genetics Unit, University of Bologna School of Medicine, 40138 Bologna, Italy;
| | - Giovanni Tallini
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology (FaBiT), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
5
|
Li W, Lingdi L, Xiqiang D, Jiheng L, Xin T, Qin H, Haisha L. MicroRNA-215-5p Inhibits the Proliferation and Migration of Wilm's Tumor Cells by Targeting CRK. Technol Cancer Res Treat 2021; 20:15330338211036523. [PMID: 34384283 PMCID: PMC8366128 DOI: 10.1177/15330338211036523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Wilm’s tumor is a common renal malignancy in childhood with unsatisfactory prognosis. microRNA-215-5p (miR-215-5p) has been reported as a tumor-suppressive miRNA in different types of human cancers, but rarely in the Wilm’s tumor. In light of this, we tried to investigate the regulatory role and underlying mechanism of miR-215-5p in the Wilm’s tumor. Methods: After sample collection and cell culture, the expression of miR-215-5p and CT10 Regulator of Kinase (CRK) was detected. Then rhabdoid tumor cell lines (formerly classified as Wilms’ tumor cell lines), G401 and WT-CLS1 cells were transfected with pcDNA3.1, pcDNA3.1-CRK, sh-NC, sh-CRK, agomir NC, miR-215-5p agomir, antagomir NC or miR-215-5p antagomir to explore the function of miR-215-5p and CRK in the Wilm’s tumor cell proliferation and migration. Moreover, the relationship between miR-215-5p and CRK was analyzed by dual luciferase reporter gene assay. Results: Lowly-expressed miR-215-5p and highly-expressed CRK were observed in the Wilm’s tumor tissues and cells. Transfection of pcDNA3.1-CRK or miR-215-5p antagomir could promote G401 and WT-CLS1 cell proliferation and enhance migration ability, while transfection of sh-CRK or miR-215-5p agomir led to opposite results. Additionally, miR-215-5p may bind to CRK. Moreover, transfection of pcDNA3.1-CRK in G401 and WT-CLS1 cells could partially reverse the inhibitory effect of miR-215-5p agomir on the proliferation and migration of Wilm’s tumor cells. Conclusion: Our study highlighted that miR-215-5p could suppress the proliferation and migration of Wilm’s tumor cells by regulating the expression of CRK, providing new ideas for molecular targeted therapy for Wilm’s tumor.
Collapse
Affiliation(s)
- Wang Li
- Children's Medical Center of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Li Lingdi
- Children's Medical Center of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Dang Xiqiang
- Children's Medical Center of The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Liu Jiheng
- Department of Hematology and Oncology, The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Tan Xin
- Children's Medical Center of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Huang Qin
- Children's Medical Center of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Li Haisha
- Cardiac Function Department of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| |
Collapse
|
6
|
An Insight into the microRNAs Associated with Arteriovenous and Cavernous Malformations of the Brain. Cells 2021; 10:cells10061373. [PMID: 34199498 PMCID: PMC8227573 DOI: 10.3390/cells10061373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Brain arteriovenous malformations (BAVMs) and cerebral cavernous malformations (CCMs) are rare developmental anomalies of the intracranial vasculature, with an irregular tendency to rupture, and as of yet incompletely deciphered pathophysiology. Because of their variety in location, morphology, and size, as well as unpredictable natural history, they represent a management challenge. MicroRNAs (miRNAs) are strands of non-coding RNA of around 20 nucleotides that are able to modulate the expression of target genes by binding completely or partially to their respective complementary sequences. Recent breakthroughs have been made on elucidating their contribution to BAVM and CCM occurrence, growth, and evolution; however, there are still countless gaps in our understanding of the mechanisms involved. Methods: We have searched the Medline (PubMed; PubMed Central) database for pertinent articles on miRNAs and their putative implications in BAVMs and CCMs. To this purpose, we employed various permutations of the terms and idioms: ‘arteriovenous malformation’, ‘AVM’, and ‘BAVM’, or ‘cavernous malformation’, ‘cavernoma’, and ‘cavernous angioma’ on the one hand; and ‘microRNA’, ‘miRNA’, and ‘miR’ on the other. Using cross-reference search; we then investigated additional articles concerning the individual miRNAs identified in other cerebral diseases. Results: Seven miRNAs were discovered to play a role in BAVMs, three of which were downregulated (miR-18a, miR-137, and miR-195*) and four upregulated (miR-7-5p, miR-199a-5p, miR-200b-3p, and let-7b-3p). Similarly, eight miRNAs were identified in CCM in humans and experimental animal models, two being upregulated (miR-27a and mmu-miR-3472a), and six downregulated (miR-125a, miR-361-5p, miR-370-3p, miR-181a-2-3p, miR-95-3p, and let-7b-3p). Conclusions: The following literature review endeavored to address the recent discoveries related to the various implications of miRNAs in the formation and growth of BAVMs and CCMs. Additionally, by presenting other cerebral pathologies correlated with these miRNAs, it aimed to emphasize the potential directions of upcoming research and biological therapies.
Collapse
|
7
|
Wen B, Zhu R, Jin H, Zhao K. Differential expression and role of miR-200 family in multiple tumors. Anal Biochem 2021; 626:114243. [PMID: 33964251 DOI: 10.1016/j.ab.2021.114243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 01/02/2023]
Abstract
microRNA (miRNA) can maintain the homeostasis of the human by participating in the regulation of cell proliferation, apoptosis, differentiation, and metabolism. During the entire stage of tumorigenesis, miRNA can maintain the heterogeneity of cancer stem cells by regulating the formation and metastasis of the tumor, which leads to chemotherapy resistance. miR-200 family consists of five members, which can regulate the proliferation, invasion, and migration of cancer cells by inhibiting the transcription of downstream genes (including zinc finger E-box binding homeobox 1 and 2, E-cadherin, N-cadherin, transforming growth factor-β, and cancer stem cell related-proteins). Meanwhile, Long non-coding RNA can bind to miR-200s to regulate the proliferation and apoptosis of cancer cells. Besides, the expression of the miR-200 family can affect the mechanism of chemotherapy resistance.
Collapse
Affiliation(s)
- Bin Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Rong Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Kui Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|