1
|
Yang Y, Yue S, Shen L, Dong H, Li H, Zhao X, Guo Q, Zhou X. Ultrasensitive 129Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413426. [PMID: 39836636 DOI: 10.1002/advs.202413426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Magnetic resonance imaging (MRI) is a cornerstone technology in clinical diagnostics and in vivo research, offering unparalleled visualization capabilities. Despite significant advancements in the past century, traditional 1H MRI still faces sensitivity limitations that hinder its further development. To overcome this challenge, hyperpolarization methods have been introduced, disrupting the thermal equilibrium of nuclear spins and leading to an increased proportion of hyperpolarized spins, thereby enhancing sensitivity by hundreds to tens of thousands of times. Among these methods, hyperpolarized (HP) 129Xe MRI, also known as ultrasensitive 129Xe MRI, stands out for achieving the highest polarization enhancement and has recently received clinical approval. It effectively tackles the challenge of weak MRI signals from low proton density in the lungs. HP 129Xe MRI is valuable for assessing structural and functional changes in lung physiology during pulmonary disease progression, tracking cells, and detecting target molecules at pico-molar concentrations. This review summarizes recent developments in HP 129Xe MRI, including its physical principles, manufacturing methods, in vivo characteristics, and diverse applications in biomedical, chemical, and material sciences. In addition, it carefully discusses potential technical improvements and future prospects for enhancing its utility in these fields, further establishing HP 129Xe MRI's importance in advancing medical imaging and research.
Collapse
Affiliation(s)
- Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Yue
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyang Shen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiling Dong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Ariyasingha NM, Samoilenko A, Chowdhury MRH, Nantogma S, Oladun C, Birchall JR, Bawardi T, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Koptyug IV, Goodson BM, Chekmenev EY. Developing Hyperpolarized Butane Gas for Ventilation Lung Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:698-710. [PMID: 39483636 PMCID: PMC11523004 DOI: 10.1021/cbmi.4c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/03/2024]
Abstract
NMR hyperpolarization dramatically improves the detection sensitivity of magnetic resonance through the increase in nuclear spin polarization. Because of the sensitivity increase by several orders of magnitude, additional applications have been unlocked, including imaging of gases in physiologically relevant conditions. Hyperpolarized 129Xe gas recently received FDA approval as the first inhalable gaseous MRI contrast agent for clinical functional lung imaging of a wide range of pulmonary diseases. However, production and utilization of hyperpolarized 129Xe gas faces a number of translational challenges including the high cost and complexity of contrast agent production and imaging using proton-only (i.e., conventional) clinical MRI scanners, which are typically not suited to scan 129Xe nuclei. As a solution to circumvent the translational challenges of hyperpolarized 129Xe, we have recently demonstrated the feasibility of a simple and cheap process for production of proton-hyperpolarized propane gas contrast agent using ultralow-cost disposable production equipment and demonstrated the feasibility of lung ventilation imaging using hyperpolarized propane gas in excised pig lungs. However, previous pilot studies have concluded that the hyperpolarized state of propane gas decays very fast with an exponential decay T 1 constant of ∼0.8 s at 1 bar (physiologically relevant pressure); moreover, the previously reported production rates were too slow for potential clinical utilization. Here, we investigate the feasibility of high-capacity production of hyperpolarized butane gas via heterogeneous parahydrogen-induced polarization using Rh nanoparticle-based catalyst utilizing butene gas as a precursor for parahydrogen pairwise addition. We demonstrate a remarkable result: the lifetime of the hyperpolarized state can be nearly doubled compared to that of propane (T 1 of ∼1.6 s and long-lived spin-state T S of ∼3.8 s at clinically relevant 1 bar pressure). Moreover, we demonstrate a production speed of up to 0.7 standard liters of hyperpolarized gas per second. These two synergistic developments pave the way to biomedical utilization of proton-hyperpolarized gas media for ventilation imaging. Indeed, here we demonstrate the feasibility of phantom imaging of hyperpolarized butane gas in Tedlar bags and also the feasibility of subsecond 2D ventilation gas imaging in excised rabbit lungs with 1.6 × 1.6 mm2 in-plane resolution using a clinical MRI scanner. The demonstrated results have the potential to revolutionize functional pulmonary imaging with a simple and inexpensive on-demand production of proton-hyperpolarized gas contrast media, followed by visualization on virtually any MRI scanner, including emerging bedside low-field MRI scanner technology.
Collapse
Affiliation(s)
- Nuwandi M. Ariyasingha
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Shiraz Nantogma
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Clementinah Oladun
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Jonathan R. Birchall
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Tarek Bawardi
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M. Kovtunova
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov
Institute of Catalysis SB RAS, 5 Acad, Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I. Bukhtiyarov
- Boreskov
Institute of Catalysis SB RAS, 5 Acad, Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Zhongjie Shi
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Kehuan Luo
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Sidhartha Tan
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- School
of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Wiström E, Hyacinthe JN, Lê TP, Gruetter R, Capozzi A. 129Xe Dynamic Nuclear Polarization Demystified: The Influence of the Glassing Matrix on the Radical Properties. J Phys Chem Lett 2024; 15:2957-2965. [PMID: 38453156 PMCID: PMC10961830 DOI: 10.1021/acs.jpclett.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
129Xe dissolution dynamic nuclear polarization (DNP) is a controversial topic. The gold standard technique for hyperpolarized xenon magnetic resonance imaging (MRI) is spin exchange optical pumping, which received FDA approval in 2022. Nevertheless, the versatility of DNP for enhancing the signal of any NMR active nucleus might provide new perspectives for hyperpolarized 129Xe NMR/MRI. Initial publications about 129Xe DNP underlined the increased complexity in the sample preparation and lower polarization levels when compared to more conventional 13C-labeled molecules, at same experimental conditions, despite very close gyromagnetic ratios. Herein, we introduce, using a Custom Fluid Path system, a user-friendly and very robust sample preparation method. Moreover, investigating the radical properties at real DNP conditions by means of LOngitudinal Detected Electron Spin Resonance, we discovered a dramatic shortening of the electron spin longitudinal relaxation time (T1e) of nitroxyl radicals in xenon DNP samples' matrices, with respect to more commonly used water:glycerol ones. Mitigating those challenges through microwave frequency modulation, we achieved over 20% 129Xe polarization without employing any deuterated solvent.
Collapse
Affiliation(s)
- Emma Wiström
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Thanh Phong Lê
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Rolf Gruetter
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Andrea Capozzi
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
- HYPERMAG,
Department of Health Technology, Technical
University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
4
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
5
|
Grynko V, Shepelytskyi Y, Batarchuk V, Aalto H, Li T, Ruset IC, DeBoef B, Albert MS. Cucurbit[6]uril Hyperpolarized Chemical Exchange Saturation Transfer Pulse Sequence Parameter Optimization and Detectability Limit Assessment at 3.0T. Chemphyschem 2023; 24:e202300346. [PMID: 37713677 DOI: 10.1002/cphc.202300346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
Molecular imaging is the future of personalized medicine; however, it requires effective contrast agents. Hyperpolarized chemical exchange saturation transfer (HyperCEST) can boost the signal of Hyperpolarized 129 Xe MRI and render it a molecular imaging modality of high efficiency. Cucurbit[6]uril (CB6) has been successfully employed in vivo as a contrast agent for HyperCEST MRI, however its performance in a clinical MRI scanner has yet to be optimized. In this study, MRI pulse sequence parameter optimization was first performed in CB6 solutions in phosphate-buffered saline (PBS), and subsequently in whole sterile citrated bovine blood. The performance of four different depolarization pulse shapes (sinusoidal, 3-lobe sinc (3LS), rectangular (block), and hyperbolic secant (hypsec) was optimized. The detectability limits of CB6 in a clinical 3.0T MRI scanner was assessed using the optimized pulse sequences. The 3LS depolarization pulses performed best, and demonstrated 24 % depletion in a 25 μM solution of CB6 in PBS. It performed similarly in blood. The CB6 detectability limit was found to be 100 μM in citrated bovine blood with a correspondent HyperCEST depletion of 30 % ±9 %. For the first time, the HP 129 Xe HyperCEST effect was observed in red blood cells (RBC) and had a similar strength as HyperCEST in plasma.
Collapse
Affiliation(s)
- Vira Grynko
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry and Materials Science Program, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Yurii Shepelytskyi
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Viktoriia Batarchuk
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Hannah Aalto
- Applied Life Science Program, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Tao Li
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | | | - Brenton DeBoef
- Chemistry Department, University of Rhode Island, 45 Upper College Rd, Kingston, RI, 02881, USA
| | - Mitchell S Albert
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
- Northern Ontario School of Medicine, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
6
|
Mikowska L, Grynko V, Shepelytskyi Y, Ruset IC, Deschamps J, Aalto H, Targosz-Korecka M, Balamore D, Harańczyk H, Albert MS. Revealing a Third Dissolved-Phase Xenon-129 Resonance in Blood Caused by Hemoglobin Glycation. Int J Mol Sci 2023; 24:11311. [PMID: 37511071 PMCID: PMC10380088 DOI: 10.3390/ijms241411311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperpolarized (HP) xenon-129 (129Xe), when dissolved in blood, has two NMR resonances: one in red blood cells (RBC) and one in plasma. The impact of numerous blood components on these resonances, however, has not yet been investigated. This study evaluates the effects of elevated glucose levels on the chemical shift (CS) and T2* relaxation times of HP 129Xe dissolved in sterile citrated sheep blood for the first time. HP 129Xe was mixed with sheep blood samples premixed with a stock glucose solution using a liquid-gas exchange module. Magnetic resonance spectroscopy was performed on a 3T clinical MRI scanner using a custom-built quadrature dual-tuned 129Xe/1H coil. We observed an additional resonance for the RBCs (129Xe-RBC1) for the increased glucose levels. The CS of 129Xe-RBC1 and 129Xe-plasma peaks did not change with glucose levels, while the CS of 129Xe-RBC2 (original RBC resonance) increased linearly at a rate of 0.015 ± 0.002 ppm/mM with glucose level. 129Xe-RBC1 T2* values increased nonlinearly from 1.58 ± 0.24 ms to 2.67 ± 0.40 ms. As a result of the increased glucose levels in blood samples, the novel additional HP 129Xe dissolved phase resonance was observed in blood and attributed to the 129Xe bound to glycated hemoglobin (HbA1c).
Collapse
Affiliation(s)
- Lutosława Mikowska
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Vira Grynko
- Chemistry and Material Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 7A5, Canada
| | - Yurii Shepelytskyi
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | | | - Joseph Deschamps
- Applied Life Sciences Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Hannah Aalto
- Applied Life Sciences Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marta Targosz-Korecka
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Dilip Balamore
- Department of Engineering, Physics and Technology, Nassau Community College, New York, NY 11530, USA
| | - Hubert Harańczyk
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Mitchell S Albert
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine University, Thunder Bay, ON P3E 2C6, Canada
| |
Collapse
|
7
|
Collier GJ, Schulte RF, Rao M, Norquay G, Ball J, Wild JM. Imaging gas-exchange lung function and brain tissue uptake of hyperpolarized 129 Xe using sampling density-weighted MRSI. Magn Reson Med 2023; 89:2217-2226. [PMID: 36744585 DOI: 10.1002/mrm.29602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE Imaging of the different resonances of hyperpolarized 129 Xe in the brain and lungs was performed using a 3D sampling density-weighted MRSI technique in healthy volunteers. METHODS Four volunteers underwent dissolved-phase hyperpolarized 129 Xe imaging in the lung with the MRSI technique, which was designed to improve the point-spread function while preserving SNR (1799 phase-encoding steps, 14-s breath hold, 2.1-cm isotropic resolution). A frequency-tailored RF excitation pulse was implemented to reliably excite both the 129 Xe gas and dissolved phase (tissue/blood signal) with 0.1° and 10° flip angles, respectively. Images of xenon gas in the lung airspaces and xenon dissolved in lung tissue/blood were used to generate quantitative signal ratio maps. The method was also optimized and used for imaging dissolved resonances of 129 Xe in the brain in 2 additional volunteers. RESULTS High-quality regional spectra of hyperpolarized 129 Xe were achieved in both the lung and the brain. Ratio maps of the different xenon resonances were obtained in the lung with sufficient SNR (> 10) at both 1.5 T and 3 T, making a triple Lorentzian fit possible and enabling the measurement of relaxation times and xenon frequency shifts on a voxel-wise basis. The imaging technique was successfully adapted for brain imaging, resulting in the first demonstration of 3D xenon brain images with a 2-cm isotropic resolution. CONCLUSION Density-weighted MRSI is an SNR and encoding-efficient way to image 129 Xe resonances in the lung and the brain, providing a valuable tool to quantify regional spectroscopic information.
Collapse
Affiliation(s)
- Guilhem J Collier
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO institute, University of Sheffield, Sheffield, UK
| | | | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - James Ball
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Feasibility of flow-related enhancement brain perfusion MRI. PLoS One 2022; 17:e0276912. [DOI: 10.1371/journal.pone.0276912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose
Brain perfusion imaging is of enormous importance for various neurological diseases. Fast gradient-echo sequences offering flow-related enhancement (FREE) could present a basis to generate perfusion-weighted maps. In this study, we obtained perfusion-weighted maps without contrast media by a previously described postprocessing algorithm from the field of functional lung MRI. At first, the perfusion signal was analyzed in fast low-angle shot (FLASH) and balanced steady-state free precession (bSSFP) sequences. Secondly, perfusion maps were compared to pseudo-continuous arterial spin labeling (pCASL) MRI in a healthy cohort. Thirdly, the feasibility of the new technique was demonstrated in a small selected group of patients with metastases and acute stroke.
Methods
One participant was examined with bSSFP and FLASH sequences at 1.5T and 3T, different flip angles and slice thicknesses. Twenty-five volunteers had bSSFP imaging and pCASL MRI. Three patients with cerebral metastases and one with acute ischemic stroke had bSSFP imaging and were compared to T1 post-contrast images and CT perfusion. Frequency analyses, SNR and perfusion contrast were compared at different flip angles and slice thicknesses. Regional correlations and Sorensen-Dice overlap were calculated in the healthy cohort. Dice overlap of the pathologies in the patient cohort were calculated.
Results
The bSSFP sequence presented detectable perfusion signal within brain vessel and parenchyma together with superior SNR compared to FLASH. Perfusion contrast and its corticomedullary differentiation increased with flip angle. Mean regional correlation was 0.36 and highly significant between FREE maps and pCASL and grey and white matter Dice match were 72% and 60% in the healthy cohort. Pathologies presented good overlap between FREE perfusion-weighted and T1 post-contrast images.
Conclusion
The feasibility of FREE brain perfusion imaging has been shown in a healthy cohort and selected patient cases with brain metastases and acute stroke. The study demonstrates a new approach for non-contrast brain perfusion imaging.
Collapse
|
9
|
Trepakova AI, Skovpin IV, Chukanov NV, Salnikov OG, Chekmenev EY, Pravdivtsev AN, Hövener JB, Koptyug IV. Subsecond Three-Dimensional Nitrogen-15 Magnetic Resonance Imaging Facilitated by Parahydrogen-Based Hyperpolarization. J Phys Chem Lett 2022; 13:10253-10260. [PMID: 36301252 PMCID: PMC9983028 DOI: 10.1021/acs.jpclett.2c02705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Magnetic resonance imaging (MRI) provides unique information about the internal structure and function of living organisms in a non-invasive way. The use of conventional proton MRI for the observation of real-time metabolism is hampered by the dominant signals of water and fat, which are abundant in living organisms. Heteronuclear MRI in conjunction with the hyperpolarization methods does not encounter this issue. In this work, we polarized 15N nuclei of [15N1]fampridine (a drug used for the treatment of multiple sclerosis) to the level of 4% in nuclear magnetic resonance (NMR) experiments and 0.7% in MRI studies using spin-lock-induced crossing combined with signal amplification by reversible exchange. Consequently, three-dimensional 15N MRI of the hyperpolarized 15N-labeled drug was acquired in 0.1 s with a signal-to-noise ratio of 70. In addition, the NMR signal enhancements for 15N-enriched fampridine and fampridine with a natural abundance of 15N nuclei were compared and an explanation for their difference was proposed.
Collapse
Affiliation(s)
- Alexandra I. Trepakova
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, SB RAS, 10 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Ivan V. Skovpin
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Oleg G. Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, Moscow, 119991, Russia
| | - Andrey N. Pravdivtsev
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CC, Universitätsklinikum Schleswig-Holstein, Universität Kiel, 14 Am Botanischen Garten, Kiel, 24118, Germany
| | - Jan-Bernd Hövener
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CC, Universitätsklinikum Schleswig-Holstein, Universität Kiel, 14 Am Botanischen Garten, Kiel, 24118, Germany
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Shepelytskyi Y, Grynko V, Rao MR, Li T, Agostino M, Wild JM, Albert MS. Hyperpolarized 129 Xe imaging of the brain: Achievements and future challenges. Magn Reson Med 2022; 88:83-105. [PMID: 35253919 PMCID: PMC9314594 DOI: 10.1002/mrm.29200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Madhwesha R Rao
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Martina Agostino
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, Sheffield, UK
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
11
|
Norquay G, Collier GJ, Rodgers OI, Gill AB, Screaton NJ, Wild J. Standalone portable xenon-129 hyperpolariser for multicentre clinical magnetic resonance imaging of the lungs. Br J Radiol 2022; 95:20210872. [PMID: 35100003 PMCID: PMC9153725 DOI: 10.1259/bjr.20210872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Design and build a portable xenon-129 (129Xe) hyperpolariser for clinically accessible 129Xe lung MRI. METHODS The polariser system consists of six main functional components: (i) a laser diode array and optics; (ii) a B0 coil assembly; (iii) an oven containing an optical cell; (iv) NMR and optical spectrometers; (v) a gas-handling manifold; and (vi) a cryostat within a permanent magnet. All components run without external utilities such as compressed air or three-phase electricity, and require just three mains sockets for operation. The system can be manually transported in a lightweight van and rapidly installed on a small estates footprint in a hospital setting. RESULTS The polariser routinely provides polarised 129Xe for routine clinical lung MRI. To test the concept of portability and rapid deployment, it was transported 200 km, installed at a hospital with no previous experience with the technology and 129Xe MR images of a diagnostic quality were acquired the day after system transport and installation. CONCLUSION This portable 129Xe hyperpolariser system could form the basis of a cost-effective platform for wider clinical dissemination and multicentre evaluation of 129Xe lung MR imaging. ADVANCES IN KNOWLEDGE Our work successfully demonstrates the feasibility of multicentre clinical 129Xe MRI with a portable hyperpolariser system.
Collapse
Affiliation(s)
- Graham Norquay
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Oliver I Rodgers
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew B Gill
- Department of Radiology, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Nicholas J Screaton
- Department of Radiology, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Jim Wild
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Friedlander Y, Zanette B, Lindenmaier A, Li D, Kadlecek S, Santyr G, Kassner A. Hyperpolarized 129 Xe MRI of the rat brain with chemical shift saturation recovery and spiral-IDEAL readout. Magn Reson Med 2021; 87:1971-1979. [PMID: 34841605 DOI: 10.1002/mrm.29105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE To demonstrate the feasibility of 129 Xe chemical shift saturation recovery (CSSR) combined with spiral-IDEAL imaging for simultaneous measurement of the time-course of red blood cell (RBC) and brain tissue signals in the rat brain. METHODS Images of both the RBC and brain tissue 129 Xe signals from the brains of five rats were obtained using interleaved spiral-IDEAL imaging following chemical shift saturation pulses applied at multiple CSSR delay times, τ. A linear fit of the signals to τ was used to calculate the slope of the signal for both RBC and brain tissue compartments on a voxel-by-voxel basis. Gas transfer was evaluated by measuring the ratio of the whole brain tissue-to-RBC signal intensities as a function of τ. To investigate the relationship between the CSSR images and gas transfer in the brain, the experiments were repeated during hypercapnic ventilation. RESULTS Hypercapnia, affected the ratio of the tissue-to-RBC signal intensity (p = 0.026), consistent with an increase in gas transfer. CONCLUSION CSSR with spiral-IDEAL imaging is feasible for acquisition of 129 Xe RBC and brain tissue time-course images in the rat brain. Differences in the time-course of the signal intensity ratios are consistent with gas transfer changes expected under hypercapnic conditions.
Collapse
Affiliation(s)
- Yonni Friedlander
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andras Lindenmaier
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Li
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giles Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Kassner
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized 129 Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021; 60:22126-22147. [PMID: 34018297 PMCID: PMC8478785 DOI: 10.1002/anie.202015200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/06/2022]
Abstract
Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4-8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin-exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as 129 Xe. Techniques based on hyperpolarized 129 Xe are poised to revolutionize clinical lung imaging, offering a non-ionizing, high-contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized 129 Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized 129 Xe to lung imaging and beyond.
Collapse
Affiliation(s)
- Alixander S Khan
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rebecca L Harvey
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan R Birchall
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems, 45101 Warp Drive, Sterling, VA, 20166, USA
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
14
|
Grynko V, Shepelytskyi Y, Li T, Hassan A, Granberg K, Albert MS. Hyperpolarized 129 Xe multi-slice imaging of the human brain using a 3D gradient echo pulse sequence. Magn Reson Med 2021; 86:3175-3181. [PMID: 34272774 DOI: 10.1002/mrm.28932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/10/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To demonstrate the possibility of performing multi-slice in-vivo human brain MRI using hyperpolarized (HP) xenon-129 (129 Xe) in two different orientations and to calculate the signal-to-noise ratio (SNR). METHODS Two healthy female participants were imaged during a single breath-hold of HP 129 Xe using a Philips Achieva 3.0T MRI scanner (Philips, Andover, MA). Each HP 129 Xe multi-slice brain image was acquired during separate HP 129 Xe breath-holds using 3D gradient echo (GRE) imaging. The acquisition started 10 s after the inhalation of 1 L of HP 129 Xe. Overall, four sagittal and three axial images were acquired (seven imaging sessions per participant). The SNR was calculated for each slice in both orientations. RESULTS The first ever HP 129 Xe multi-slice images of the brain were acquired in axial and sagittal orientations. The HP 129 Xe signal distribution correlated well with the gray matter distribution. The highest SNR values were close in the axial and sagittal orientations (19.46 ± 3.25 and 18.76 ± 4.94, respectively). Additionally, anatomical features, such as the ventricles, were observed in both orientations. CONCLUSION The possibility of using multi-slice HP 129 Xe human brain magnetic resonance imaging was demonstrated for the first time. HP 129 Xe multi-slice MRI can be implemented for brain imaging to improve current diagnostic methods.
Collapse
Affiliation(s)
- Vira Grynko
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Yurii Shepelytskyi
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Karl Granberg
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada
| | - Mitchell S Albert
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
15
|
Shepelytskyi Y, Grynko V, Li T, Hassan A, Granberg K, Albert MS. The effects of an initial depolarization pulse on dissolved phase hyperpolarized 129 Xe brain MRI. Magn Reson Med 2021; 86:3147-3155. [PMID: 34254356 DOI: 10.1002/mrm.28918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate the effect of an initial 90° depolarization RF pulse on the dissolved-phase hyperpolarized (HP) xenon-129 (129 Xe) brain imaging and to compare the SNR variability of HP 129 Xe images acquired without an initial depolarization RF pulse to those following the initial depolarization pulse. METHODS Five cognitive normal healthy volunteers were imaged using a Philips Achieva 3.0T MRI scanner during a single breath-hold following inhalation of 1 L of HP 129 Xe. Each participant underwent six HP 129 Xe scans. Three scans were performed using conventional single-slice projection HP 129 Xe brain imaging, and the other three scans were performed using the HP 129 Xe time-of-flight imaging with an initial rectangular depolarization pulse. RESULTS Although the utilization of an initial depolarization results in the reduction of the mean image SNR, the presence of an initial depolarization RF pulse reduces the SNR variability of the HP 129 Xe brain image by a factor of 2.26. The highest SNR variability was observed from the posterior brain region, where the anterior region possessed the lower level of signal variability. CONCLUSION An initial 90° depolarization RF pulse, applied prior to the HP 129 Xe image acquisition, reduced the HP 129 Xe signal variability more than two times between the different breath-hold images.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Tao Li
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Karl Granberg
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada
| | - Mitchell S Albert
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
16
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized
129
Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alixander S. Khan
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Rebecca L. Harvey
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Jonathan R. Birchall
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
| | - Robert K. Irwin
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems 45101 Warp Drive Sterling VA 20166 USA
| | | | | | - Michael J. Barlow
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 Moscow 119991 Russia
| |
Collapse
|
17
|
Huang YK, Lin CK, Wang CC, Kuo JR, Lai CF, Chen CW, Lin BS. A novel wireless optical technique for quantitative evaluation of cerebral perfusion pressure in a fluid percussion animal model of traumatic brain injury. Quant Imaging Med Surg 2021; 11:2388-2396. [PMID: 34079709 DOI: 10.21037/qims-20-777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Cerebral perfusion pressure (CPP) calculated by mean arterial pressure (MAP) minus intracranial pressure (ICP) is related to blood flow into the brain and reflects cerebral ischemia and oxygenation indirectly. Near-infrared spectroscopy (NIRS) can assess cerebral ischemia and hypoxia non-invasively and has been widely used in neuroscience. However, the correlation between CPP and NIRS, and its potential application in traumatic brain injury, has seldom been investigated. Methods We used a novel wireless NIRS system and commercial ICP and MAP devices to assess the trauma to rat brains using different impact intensity. The relationship between CPP and NIRS parameters with increasing impact strength were investigated. Results The results showed that changes in CPP (∆CPP), oxy-hemoglobin {∆[HbO2]}, total-hemoglobin {∆[HbT]}, and deoxy-hemoglobin were inversely proportional to the increase in impact intensity, and the correlations between ∆CPP, NIRS parameters {∆[HbO2], and ∆[HbT]} were significant. Conclusions The NIRS system can assess cerebral ischemia and oxygenation non-invasively and changes of HbO2 and HbT may be used as reference parameters to assess the level of CPP in an animal model of traumatic brain injury.
Collapse
Affiliation(s)
- Yao-Kuang Huang
- Division of Cardiovascular Surgery and Radiology, Chiayi Chang Gung Memorial Hospital, Putz, Chiayi.,College of Medicine, Chang Gung University, Taoyuan
| | - Chin-Kuo Lin
- College of Medicine, Chang Gung University, Taoyuan.,Division of Pulmonary Infection and Critical Care, Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Putz, Chiayi
| | - Che-Chuan Wang
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan
| | - Jinn-Rung Kuo
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan
| | - Chien-Fu Lai
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan
| | - Chien-Wei Chen
- Division of Cardiovascular Surgery and Radiology, Chiayi Chang Gung Memorial Hospital, Putz, Chiayi.,College of Medicine, Chang Gung University, Taoyuan
| | - Bor-Shyh Lin
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan
| |
Collapse
|
18
|
Rao MR, Norquay G, Stewart NJ, Wild JM. Measuring 129 Xe transfer across the blood-brain barrier using MR spectroscopy. Magn Reson Med 2021; 85:2939-2949. [PMID: 33458859 PMCID: PMC7986241 DOI: 10.1002/mrm.28646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study develops a tracer kinetic model of xenon uptake in the human brain to determine the transfer rate of inhaled hyperpolarized 129 Xe from cerebral blood to gray matter that accounts for the effects of cerebral physiology, perfusion and magnetization dynamics. The 129 Xe transfer rate is expressed using a tracer transfer coefficient, which estimates the quantity of hyperpolarized 129 Xe dissolved in cerebral blood under exchange with depolarized 129 Xe dissolved in gray matter under equilibrium of concentration. THEORY AND METHODS Time-resolved MR spectra of hyperpolarized 129 Xe dissolved in the human brain were acquired from three healthy volunteers. Acquired spectra were numerically fitted with five Lorentzian peaks in accordance with known 129 Xe brain spectral peaks. The signal dynamics of spectral peaks for gray matter and red blood cells were quantified, and correction for the 129 Xe T1 dependence upon blood oxygenation was applied. 129 Xe transfer dynamics determined from the ratio of the peaks for gray matter and red blood cells was numerically fitted with the developed tracer kinetic model. RESULTS For all the acquired NMR spectra, the developed tracer kinetic model fitted the data with tracer transfer coefficients between 0.1 and 0.14. CONCLUSION In this study, a tracer kinetic model was developed and validated that estimates the transfer rate of HP 129 Xe from cerebral blood to gray matter in the human brain.
Collapse
Affiliation(s)
- Madhwesha R Rao
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Neil J Stewart
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|