1
|
Lomae A, Preechakasedkit P, Hanpanich O, Ozer T, Henry CS, Maruyama A, Pasomsub E, Phuphuakrat A, Rengpipat S, Vilaivan T, Chailapakul O, Ruecha N, Ngamrojanavanich N. Label free electrochemical DNA biosensor for COVID-19 diagnosis. Talanta 2023; 253:123992. [PMID: 36228554 PMCID: PMC9546783 DOI: 10.1016/j.talanta.2022.123992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
The COVID-19 pandemic has significantly increased the development of the development of point-of-care (POC) diagnostic tools because they can serve as useful tools for detecting and controlling spread of the disease. Most current methods require sophisticated laboratory instruments and specialists to provide reliable, cost-effective, specific, and sensitive POC testing for COVID-19 diagnosis. Here, a smartphone-assisted Sensit Smart potentiostat (PalmSens) was integrated with a paper-based electrochemical sensor to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A disposable paper-based device was fabricated, and the working electrode directly modified with a pyrrolidinyl peptide nucleic acid (acpcPNA) as the biological recognition element to capture the target complementary DNA (cDNA). In the presence of the target cDNA, hybridization with acpcPNA probe blocks the redox conversion of a redox reporter, leading to a decrease in electrochemical response correlating to SARS-CoV-2 concentration. Under optimal conditions, a linear range from 0.1 to 200 nM and a detection limit of 1.0 pM were obtained. The PNA-based electrochemical paper-based analytical device (PNA-based ePAD) offers high specificity toward SARS-CoV-2 N gene because of the highly selective PNA-DNA binding. The developed sensor was used for amplification-free SARS-CoV-2 detection in 10 nasopharyngeal swab samples (7 SARS-CoV-2 positive and 3 SARS-CoV-2 negative), giving a 100% agreement result with RT-PCR.
Collapse
Affiliation(s)
- Atchara Lomae
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pattarachaya Preechakasedkit
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Orakan Hanpanich
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Charles S. Henry
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand,Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Rengpipat
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand,Qualified Diagnostic Development Center, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nipapan Ruecha
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand,Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand,Corresponding author. Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Nattaya Ngamrojanavanich
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand,Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand,Corresponding author. Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, Moarefian M, Aran K, Dincer C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201085. [PMID: 35288985 DOI: 10.1002/adma.202201085] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Several viral infectious diseases appear limitless since the beginning of the 21st century, expanding into pandemic lengths. Thus, there are extensive efforts to provide more efficient means of diagnosis, a better understanding of acquired immunity, and improved monitoring of inflammatory biomarkers, as these are all crucial for controlling the spread of infection while aiding in vaccine development and improving patient outcomes. In this regard, various biosensors have been developed recently to streamline pathogen and immune response detection by addressing the limitations of traditional methods, including isothermal amplification-based systems and lateral flow assays. This review explores state-of-the-art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point-of-care adaptability. Additionally, next-generation biosensing technologies that offer better sensitivity and selectivity, and easy handling for end-users are highlighted. An emerging example of these next-generation biosensors are those powered by novel synthetic biology tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated proteins (Cas), in combination with integrated point-of-care devices. Lastly, the current challenges are discussed and a roadmap for furthering these advanced biosensing technologies to manage future pandemics is provided.
Collapse
Affiliation(s)
- Gözde Kabay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
- Institute of Functional Interfaces - IFG, Karlsruhe Institute of Technology, 76344, Karlsruhe, Germany
| | - Jonalyn DeCastro
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Alara Altay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Kasey Smith
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Hsiang-Wei Lu
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - Maryam Moarefian
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea Bio Inc., San Diego, CA, 92121, USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
3
|
Zhao M, Zhao X, Sun R, Zhang J, Wang H, Shi C, Ma C, Li Y. Ultrafast Electrochemical DNA Biosensor Based on Electrical Potential-Assisted Hybridization Using Differential Pulse Voltammetry (DPV). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2016791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mingyuan Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China Qingdao
| | - Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China Qingdao
| | - Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China Qingdao
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China Qingdao
| | - Haixia Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China Qingdao
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao,China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China Qingdao
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China Qingdao
| |
Collapse
|
5
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|