1
|
Maqsood S, Damaševičius R, Maskeliūnas R, Forkert ND, Haider S, Latif S. Csec-net: a novel deep features fusion and entropy-controlled firefly feature selection framework for leukemia classification. Health Inf Sci Syst 2025; 13:9. [PMID: 39736875 PMCID: PMC11682032 DOI: 10.1007/s13755-024-00327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Leukemia, a life-threatening form of cancer, poses a significant global health challenge affecting individuals of all age groups, including both children and adults. Currently, the diagnostic process relies on manual analysis of microscopic images of blood samples. In recent years, machine learning employing deep learning approaches has emerged as cutting-edge solutions for image classification problems. Thus, the aim of this work was to develop and evaluate deep learning methods to enable a computer-aided leukemia diagnosis. The proposed method is composed of multiple stages: Firstly, the given dataset images undergo preprocessing. Secondly, five pre-trained convolutional neural network models, namely MobileNetV2, EfficientNetB0, ConvNeXt-V2, EfficientNetV2, and DarkNet-19, are modified and transfer learning is used for training. Thirdly, deep feature vectors are extracted from each of the convolutional neural network and combined using a convolutional sparse image decomposition fusion strategy. Fourthly, the proposed approach employs an entropy-controlled firefly feature selection technique, which selects the most optimal features for subsequent classification. Finally, the selected features are fed into a multi-class support vector machine for the final classification. The proposed algorithm was applied to a total of 15562 images having four datasets, namely ALLID_B1, ALLID_B2, C_NMC 2019, and ASH and demonstrated superior accuracies of 99.64%, 98.96%, 96.67%, and 98.89%, respectively, surpassing the performance of previous works in the field.
Collapse
Affiliation(s)
- Sarmad Maqsood
- Centre of Real Time Computer Systems, Faculty of Informatics, Kaunas University of Technology, LT-51386 Kaunas, Lithuania
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Robertas Damaševičius
- Centre of Real Time Computer Systems, Faculty of Informatics, Kaunas University of Technology, LT-51386 Kaunas, Lithuania
| | - Rytis Maskeliūnas
- Centre of Real Time Computer Systems, Faculty of Informatics, Kaunas University of Technology, LT-51386 Kaunas, Lithuania
| | - Nils D. Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Shahab Haider
- Faculty of Computer Science and Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23640 Pakistan
| | - Shahid Latif
- Department of Electrical Engineering, Iqra National University, Peshawar, 25000 Pakistan
| |
Collapse
|
2
|
Dai B, Liang X, Dai Y, Ding X. Artificial intelligence medical image-aided diagnosis system for risk assessment of adjacent segment degeneration after lumbar fusion surgery. SLAS Technol 2025; 32:100283. [PMID: 40216256 DOI: 10.1016/j.slast.2025.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
The existing assessment of adjacent segment degeneration (ASD) risk after lumbar fusion surgery focuses on a single type of clinical information or imaging manifestations. In the early stages, it is difficult to show obvious degeneration characteristics, and the patients' true risks cannot be fully revealed. The evaluation results based on imaging ignore the clinical symptoms and changes in quality of life of patients, limiting the understanding of the natural process of ASD and the comprehensive assessment of its risk factors, and hindering the development of effective prevention strategies. To improve the quality of postoperative management and effectively identify the characteristics of ASD, this paper studies the risk assessment of ASD after lumbar fusion surgery by combining the artificial intelligence (AI) medical image-aided diagnosis system. First, the collaborative attention mechanism is adopted to start with the extraction of single-modal features and fuse the multi-modal features of computed tomography (CT) and magnetic resonance imaging (MRI) images. Then, the similarity matrix is weighted to achieve the complementarity of multi-modal information, and the stability of feature extraction is improved through the residual network structure. Finally, the fully connected network (FCN) is combined with the multi-task learning framework to provide a more comprehensive assessment of the risk of ASD. The experimental analysis results show that compared with three advanced models, three dimensional-convolutional neural networks (3D-CNN), U-Net++, and deep residual networks (DRN), the accuracy of the model in this paper is 3.82 %, 6.17 %, and 6.68 % higher respectively; the precision is 0.56 %, 1.09 %, and 4.01 % higher respectively; the recall is 3.41 %, 4.85 %, and 5.79 % higher respectively. The conclusion shows that the AI medical image-aided diagnosis system can help to accurately identify the characteristics of ASD and effectively assess the risks after lumbar fusion surgery.
Collapse
Affiliation(s)
- Bin Dai
- Clinical College of Medicine, Wannan Medical College, Wuhu 241000, Anhui, PR China.
| | - Xinyu Liang
- Anhui Medical University, Hefei 230000, Anhui, PR China.
| | - Yan Dai
- Changzhou Tianning District Center for Disease Control and Prevention, Changzhou 213017, Jiangsu, PR China.
| | - Xintian Ding
- Anhui Medical University, Hefei 230000, Anhui, PR China.
| |
Collapse
|
3
|
Lv J, Slowik A, Rani S, Kim BG, Chen CM, Kumari S, Li K, Lyu X, Jiang H. Multimodal Metaverse Healthcare: A Collaborative Representation and Adaptive Fusion Approach for Generative Artificial-Intelligence-Driven Diagnosis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0616. [PMID: 40078668 PMCID: PMC11899152 DOI: 10.34133/research.0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
The metaverse enables immersive virtual healthcare environments, presenting opportunities for enhanced care delivery. A key challenge lies in effectively combining multimodal healthcare data and generative artificial intelligence abilities within metaverse-based healthcare applications, which is a problem that needs to be addressed. This paper proposes a novel multimodal learning framework for metaverse healthcare, MMLMH, based on collaborative intra- and intersample representation and adaptive fusion. Our framework introduces a collaborative representation learning approach that captures shared and modality-specific features across text, audio, and visual health data. By combining modality-specific and shared encoders with carefully formulated intrasample and intersample collaboration mechanisms, MMLMH achieves superior feature representation for complex health assessments. The framework's adaptive fusion approach, utilizing attention mechanisms and gated neural networks, demonstrates robust performance across varying noise levels and data quality conditions. Experiments on metaverse healthcare datasets demonstrate MMLMH's superior performance over baseline methods across multiple evaluation metrics. Longitudinal studies and visualization further illustrate MMLMH's adaptability to evolving virtual environments and balanced performance across diagnostic accuracy, patient-system interaction efficacy, and data integration complexity. The proposed framework has a unique advantage in that a similar level of performance is maintained across various patient populations and virtual avatars, which could lead to greater personalization of healthcare experiences in the metaverse. MMLMH's successful functioning in such complicated circumstances suggests that it can combine and process information streams from several sources. They can be successfully utilized in next-generation healthcare delivery through virtual reality.
Collapse
Affiliation(s)
- Jianhui Lv
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China
| | - Adam Slowik
- Koszalin University of Technology, Koszalin 98701, Poland
| | - Shalli Rani
- Chitkara University, Rajpura, Punjab 140401, India
| | - Byung-Gyu Kim
- Sookmyung Women’s University, Seoul, Republic of Korea
| | - Chien-Ming Chen
- Nanjing University of Information Science & Technology, Nanjing, China
| | - Saru Kumari
- Chaudhary Charan Singh University, Meerut, India
| | - Keqin Li
- State University of New York, New Paltz, NY 12561, USA
| | - Xiaohong Lyu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China
| | - Huamao Jiang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China
| |
Collapse
|
4
|
Amjad U, Raza A, Fahad M, Farid D, Akhunzada A, Abubakar M, Beenish H. Context aware machine learning techniques for brain tumor classification and detection - A review. Heliyon 2025; 11:e41835. [PMID: 39906822 PMCID: PMC11791217 DOI: 10.1016/j.heliyon.2025.e41835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
Background Machine learning has tremendous potential in acute medical care, particularly in the field of precise medical diagnosis, prediction, and classification of brain tumors. Malignant gliomas, due to their aggressive growth and dismal prognosis, stand out among various brain tumor types. Recent advancements in understanding the genetic abnormalities that underlie these tumors have shed light on their histo-pathological and biological characteristics, which support in better classification and prognosis. Objectives This review aims to predict gene alterations and establish structured correlations among various tumor types, extending the prediction of genetic mutations and structures using the latest machine learning techniques. Specifically, it focuses on multi-modalities of Magnetic Resonance Imaging (MRI) and histopathology, utilizing Convolutional Neural Networks (CNN) for image processing and analysis. Methods The review encompasses the most recent developments in MRI, and histology image processing methods across multiple tumor classes, including Glioma, Meningioma, Pituitary, Oligodendroglioma, and Astrocytoma. It identifies challenges in tumor classification, segmentation, datasets, and modalities, employing various neural network architectures. A competitive analysis assesses the performance of CNN. Furthermore it also implies K-MEANS clustering to predict Genetic structure, Genes Clusters prediction and Molecular Alteration of various types and grades of tumors e.g. Glioma, Meningioma, Pituitary, Oligodendroglioma, and Astrocytoma. Results CNN and KNN structures, with their ability to extract highlights in image-based information, prove effective in tumor classification and segmentation, surmounting challenges in image analysis. Competitive analysis reveals that CNN and outperform others algorithms on publicly available datasets, suggesting their potential for precise tumor diagnosis and treatment planning. Conclusion Machine learning, especially through CNN and SVM algorithms, demonstrates significant potential in the accurate diagnosis and classification of brain tumors based on imaging and histo-pathological data. Further advancements in this area hold promise for improving the accuracy and efficiency of intra-operative tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Usman Amjad
- NED University of Engineering and Technology, Karachi, Pakistan
| | - Asif Raza
- Sir Syed University of Engineering and Technology, Karachi, Pakistan
| | - Muhammad Fahad
- Karachi Institute of Economics and Technology, Karachi, Pakistan
| | | | - Adnan Akhunzada
- College of Computing and IT, University of Doha for Science and Technology, Qatar
| | - Muhammad Abubakar
- Muhammad Nawaz Shareef University of Engineering and Technology, Multan, Pakistan
| | - Hira Beenish
- Karachi Institute of Economics and Technology, Karachi, Pakistan
| |
Collapse
|
5
|
Odusami M, Maskeliūnas R, Damaševičius R, Misra S. Machine learning with multimodal neuroimaging data to classify stages of Alzheimer's disease: a systematic review and meta-analysis. Cogn Neurodyn 2024; 18:775-794. [PMID: 38826669 PMCID: PMC11143094 DOI: 10.1007/s11571-023-09993-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 06/04/2024] Open
Abstract
In recent years, Alzheimer's disease (AD) has been a serious threat to human health. Researchers and clinicians alike encounter a significant obstacle when trying to accurately identify and classify AD stages. Several studies have shown that multimodal neuroimaging input can assist in providing valuable insights into the structural and functional changes in the brain related to AD. Machine learning (ML) algorithms can accurately categorize AD phases by identifying patterns and linkages in multimodal neuroimaging data using powerful computational methods. This study aims to assess the contribution of ML methods to the accurate classification of the stages of AD using multimodal neuroimaging data. A systematic search is carried out in IEEE Xplore, Science Direct/Elsevier, ACM DigitalLibrary, and PubMed databases with forward snowballing performed on Google Scholar. The quantitative analysis used 47 studies. The explainable analysis was performed on the classification algorithm and fusion methods used in the selected studies. The pooled sensitivity and specificity, including diagnostic efficiency, were evaluated by conducting a meta-analysis based on a bivariate model with the hierarchical summary receiver operating characteristics (ROC) curve of multimodal neuroimaging data and ML methods in the classification of AD stages. Wilcoxon signed-rank test is further used to statistically compare the accuracy scores of the existing models. With a 95% confidence interval of 78.87-87.71%, the combined sensitivity for separating participants with mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%; for separating participants with AD from NC, it was 94.60% (90.76%, 96.89%); for separating participants with progressive MCI (pMCI) from stable MCI (sMCI), it was 80.41% (74.73%, 85.06%). With a 95% confidence interval (78.87%, 87.71%), the Pooled sensitivity for distinguishing mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%, with a 95% confidence interval (90.76%, 96.89%), the Pooled sensitivity for distinguishing AD from NC was 94.60%, likewise (MCI) from healthy control (NC) participants was 83.77% progressive MCI (pMCI) from stable MCI (sMCI) was 80.41% (74.73%, 85.06%), and early MCI (EMCI) from NC was 86.63% (82.43%, 89.95%). Pooled specificity for differentiating MCI from NC was 79.16% (70.97%, 87.71%), AD from NC was 93.49% (91.60%, 94.90%), pMCI from sMCI was 81.44% (76.32%, 85.66%), and EMCI from NC was 85.68% (81.62%, 88.96%). The Wilcoxon signed rank test showed a low P-value across all the classification tasks. Multimodal neuroimaging data with ML is a promising future in classifying the stages of AD but more research is required to increase the validity of its application in clinical practice.
Collapse
Affiliation(s)
- Modupe Odusami
- Department of Multimedia Engineering, Kaunas University of Technology, Kaunas, Lithuania
| | - Rytis Maskeliūnas
- Department of Multimedia Engineering, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Sanjay Misra
- Department of Applied Data Science, Institute for Energy Technology, Halden, Norway
| |
Collapse
|
6
|
Pan J, Ho S, Ly A, Kalloniatis M, Sowmya A. Drusen-aware model for age-related macular degeneration recognition. Ophthalmic Physiol Opt 2023; 43:668-679. [PMID: 36786498 PMCID: PMC10946718 DOI: 10.1111/opo.13108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION The purpose of this study was to build an automated age-related macular degeneration (AMD) colour fundus photography (CFP) recognition method that incorporates confounders (other ocular diseases) and normal age-related changes by using drusen masks for spatial feature supervision. METHODS A range of clinical sources were used to acquire 7588 CFPs. Contrast limited adaptive histogram equalisation was used for pre-processing. ResNet50 was used as the backbone network, and a spatial attention block was added to integrate prior knowledge of drusen features into the backbone. The evaluation metrics used were sensitivity, specificity and F1 score, which is the harmonic mean of precision and recall (sensitivity) and area under the receiver-operating characteristic (AUC). Fivefold cross-validation was performed, and the results compared with four other methods. RESULTS Excellent discrimination results were obtained with the algorithm. On the public dataset (n = 6565), the proposed method achieved a mean (SD) sensitivity of 0.54 (0.09), specificity of 0.99 (0.00), F1 score of 0.62 (0.06) and AUC of 0.92 (0.02). On the private dataset (n = 1023), the proposed method achieved a sensitivity of 0.92 (0.02), specificity of 0.98 (0.01), F1 score of 0.92 (0.01) and AUC of 0.98 (0.01). CONCLUSION The proposed drusen-aware model outperformed baseline and other vessel feature-based methods in F1 and AUC on the AMD/normal CFP classification task and achieved comparable results on datasets that included other diseases that often confound classification. The method also improved results when a five-category grading protocol was used, thereby reflecting discriminative ability of the algorithm within a real-life clinical setting.
Collapse
Affiliation(s)
- Junjun Pan
- School of Computer Science and EngineeringUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Sharon Ho
- Centre for Eye HealthUniversity of New South WalesKensingtonNew South WalesAustralia
- School of Optometry and Vision ScienceUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Angelica Ly
- School of Optometry and Vision ScienceUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Michael Kalloniatis
- School of Optometry and Vision ScienceUniversity of New South WalesKensingtonNew South WalesAustralia
- School of Medicine (Optometry)Deakin UniversityWaurn PondsVictoriaAustralia
| | - Arcot Sowmya
- School of Computer Science and EngineeringUniversity of New South WalesKensingtonNew South WalesAustralia
| |
Collapse
|
7
|
Zhang X, Dong X, Saripan MIB, Du D, Wu Y, Wang Z, Cao Z, Wen D, Liu Y, Marhaban MH. Deep learning PET/CT-based radiomics integrates clinical data: A feasibility study to distinguish between tuberculosis nodules and lung cancer. Thorac Cancer 2023. [PMID: 37183577 DOI: 10.1111/1759-7714.14924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Radiomic diagnosis models generally consider only a single dimension of information, leading to limitations in their diagnostic accuracy and reliability. The integration of multiple dimensions of information into the deep learning model have the potential to improve its diagnostic capabilities. The purpose of study was to evaluate the performance of deep learning model in distinguishing tuberculosis (TB) nodules and lung cancer (LC) based on deep learning features, radiomic features, and clinical information. METHODS Positron emission tomography (PET) and computed tomography (CT) image data from 97 patients with LC and 77 patients with TB nodules were collected. One hundred radiomic features were extracted from both PET and CT imaging using the pyradiomics platform, and 2048 deep learning features were obtained through a residual neural network approach. Four models included traditional machine learning model with radiomic features as input (traditional radiomics), a deep learning model with separate input of image features (deep convolutional neural networks [DCNN]), a deep learning model with two inputs of radiomic features and deep learning features (radiomics-DCNN) and a deep learning model with inputs of radiomic features and deep learning features and clinical information (integrated model). The models were evaluated using area under the curve (AUC), sensitivity, accuracy, specificity, and F1-score metrics. RESULTS The results of the classification of TB nodules and LC showed that the integrated model achieved an AUC of 0.84 (0.82-0.88), sensitivity of 0.85 (0.80-0.88), and specificity of 0.84 (0.83-0.87), performing better than the other models. CONCLUSION The integrated model was found to be the best classification model in the diagnosis of TB nodules and solid LC.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
| | - Xianling Dong
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
- Hebei International Research Center of Medical Engineering and Hebei Provincial Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, Hebei, China
| | | | - Dongyang Du
- School of Biomedical Engineering and Guangdong Province Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yanjun Wu
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
| | - Zhongxiao Wang
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
| | - Zhendong Cao
- Department of Radiology, the Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Dong Wen
- Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
| | - Yanli Liu
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
| | | |
Collapse
|
8
|
Xia Y, Yun H, Liu Y. MFEFNet: Multi-scale feature enhancement and Fusion Network for polyp segmentation. Comput Biol Med 2023; 157:106735. [PMID: 36965326 DOI: 10.1016/j.compbiomed.2023.106735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
The polyp segmentation technology based on computer-aided can effectively avoid the deterioration of polyps and prevent colorectal cancer. To segment the polyp target precisely, the Multi-Scale Feature Enhancement and Fusion Network (MFEFNet) is proposed. First of all, to balance the network's predictive ability and complexity, ResNet50 is designed as the backbone network, and the Shift Channel Block (SCB) is used to unify the spatial location of feature mappings and emphasize local information. Secondly, to further improve the network's feature-extracting ability, the Feature Enhancement Block (FEB) is added, which decouples features, reinforces features by multiple perspectives and reconstructs features. Meanwhile, to weaken the semantic gap in the feature fusion process, we propose strong associated couplers, the Multi-Scale Feature Fusion Block (MSFFB) and the Reducing Difference Block (RDB), which are mainly composed of multiple cross-complementary information interaction modes and reinforce the long-distance dependence between features. Finally, to further refine local regions, the Polarized Self-Attention (PSA) and the Balancing Attention Module (BAM) are introduced for better exploration of detailed information between foreground and background boundaries. Experiments have been conducted under five benchmark datasets (Kvasir-SEG, CVC-ClinicDB, CVC-ClinicDB, CVC300 and CVC-ColonDB) and compared with state-of-the-art polyp segmentation algorithms. The experimental result shows that the proposed network improves Dice and mean intersection over union (mIoU) by an average score of 3.4% and 4%, respectively. Therefore, extensive experiments demonstrate that the proposed network performs favorably against more than a dozen state-of-the-art methods on five popular polyp segmentation benchmarks.
Collapse
Affiliation(s)
- Yang Xia
- School of the Graduate, Changchun University, Changchun, 130022, Jilin, China; School of Electronic Information Engineering, Changchun University, Changchun, 130022, Jilin, China
| | - Haijiao Yun
- School of Electronic Information Engineering, Changchun University, Changchun, 130022, Jilin, China.
| | - Yanjun Liu
- School of the Graduate, Changchun University, Changchun, 130022, Jilin, China; School of Electronic Information Engineering, Changchun University, Changchun, 130022, Jilin, China
| |
Collapse
|
9
|
Hussain S, Haider S, Maqsood S, Damaševičius R, Maskeliūnas R, Khan M. ETISTP: An Enhanced Model for Brain Tumor Identification and Survival Time Prediction. Diagnostics (Basel) 2023; 13:diagnostics13081456. [PMID: 37189556 DOI: 10.3390/diagnostics13081456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Technology-assisted diagnosis is increasingly important in healthcare systems. Brain tumors are a leading cause of death worldwide, and treatment plans rely heavily on accurate survival predictions. Gliomas, a type of brain tumor, have particularly high mortality rates and can be further classified as low- or high-grade, making survival prediction challenging. Existing literature provides several survival prediction models that use different parameters, such as patient age, gross total resection status, tumor size, or tumor grade. However, accuracy is often lacking in these models. The use of tumor volume instead of size may improve the accuracy of survival prediction. In response to this need, we propose a novel model, the enhanced brain tumor identification and survival time prediction (ETISTP), which computes tumor volume, classifies it into low- or high-grade glioma, and predicts survival time with greater accuracy. The ETISTP model integrates four parameters: patient age, survival days, gross total resection (GTR) status, and tumor volume. Notably, ETISTP is the first model to employ tumor volume for prediction. Furthermore, our model minimizes the computation time by allowing for parallel execution of tumor volume computation and classification. The simulation results demonstrate that ETISTP outperforms prominent survival prediction models.
Collapse
Affiliation(s)
- Shah Hussain
- Department of Computer Science, City University of Science and Information Technology, Peshawar 25000, Pakistan
| | - Shahab Haider
- Department of Computer Science, City University of Science and Information Technology, Peshawar 25000, Pakistan
| | - Sarmad Maqsood
- Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
| | - Rytis Maskeliūnas
- Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Muzammil Khan
- Department of Computer & Software Technology, University of Swat, Swat 19200, Pakistan
| |
Collapse
|
10
|
Maqsood S, Damaševičius R. Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare. Neural Netw 2023; 160:238-258. [PMID: 36701878 DOI: 10.1016/j.neunet.2023.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/13/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND The idea of smart healthcare has gradually gained attention as a result of the information technology industry's rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features. METHODS In this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification. RESULTS The proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works. CONCLUSION When compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy.
Collapse
Affiliation(s)
- Sarmad Maqsood
- Department of Software Engineering, Faculty of Informatics Engineering, Kaunas University of Technology, LT-51386 Kaunas, Lithuania.
| | - Robertas Damaševičius
- Department of Software Engineering, Faculty of Informatics Engineering, Kaunas University of Technology, LT-51386 Kaunas, Lithuania.
| |
Collapse
|
11
|
Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:7717712. [PMID: 36909966 PMCID: PMC9998154 DOI: 10.1155/2023/7717712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Medical image analysis places a significant focus on breast cancer, which poses a significant threat to women's health and contributes to many fatalities. An early and precise diagnosis of breast cancer through digital mammograms can significantly improve the accuracy of disease detection. Computer-aided diagnosis (CAD) systems must analyze the medical imagery and perform detection, segmentation, and classification processes to assist radiologists with accurately detecting breast lesions. However, early-stage mammography cancer detection is certainly difficult. The deep convolutional neural network has demonstrated exceptional results and is considered a highly effective tool in the field. This study proposes a computational framework for diagnosing breast cancer using a ResNet-50 convolutional neural network to classify mammogram images. To train and classify the INbreast dataset into benign or malignant categories, the framework utilizes transfer learning from the pretrained ResNet-50 CNN on ImageNet. The results revealed that the proposed framework achieved an outstanding classification accuracy of 93%, surpassing other models trained on the same dataset. This novel approach facilitates early diagnosis and classification of malignant and benign breast cancer, potentially saving lives and resources. These outcomes highlight that deep convolutional neural network algorithms can be trained to achieve highly accurate results in various mammograms, along with the capacity to enhance medical tools by reducing the error rate in screening mammograms.
Collapse
|
12
|
Azam KSF, Ryabchykov O, Bocklitz T. A Review on Data Fusion of Multidimensional Medical and Biomedical Data. Molecules 2022; 27:7448. [PMID: 36364272 PMCID: PMC9655963 DOI: 10.3390/molecules27217448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 08/05/2024] Open
Abstract
Data fusion aims to provide a more accurate description of a sample than any one source of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining data from multiple sources. Both aim to improve the characterization of samples and might improve clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved over the last decades in data fusion approaches in the context of the medical and biomedical fields. We collected approaches for interpreting multiple sources of data in different combinations: image to image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We found that the most prevalent combination is the image-to-image fusion and that most data fusion approaches were applied together with deep learning or machine learning methods.
Collapse
Affiliation(s)
- Kazi Sultana Farhana Azam
- Leibniz Institute of Photonic Technology, Member of Leibniz-Research Alliance “Health Technologies”, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Oleg Ryabchykov
- Leibniz Institute of Photonic Technology, Member of Leibniz-Research Alliance “Health Technologies”, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Thomas Bocklitz
- Leibniz Institute of Photonic Technology, Member of Leibniz-Research Alliance “Health Technologies”, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
13
|
Hamza A, Attique Khan M, Wang SH, Alqahtani A, Alsubai S, Binbusayyis A, Hussein HS, Martinetz TM, Alshazly H. COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization. Front Public Health 2022; 10:948205. [PMID: 36111186 PMCID: PMC9468600 DOI: 10.3389/fpubh.2022.948205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease that has claimed the lives of millions of people worldwide in the last 2 years. Because of the disease's rapid spread, it is critical to diagnose it at an early stage in order to reduce the rate of spread. The images of the lungs are used to diagnose this infection. In the last 2 years, many studies have been introduced to help with the diagnosis of COVID-19 from chest X-Ray images. Because all researchers are looking for a quick method to diagnose this virus, deep learning-based computer controlled techniques are more suitable as a second opinion for radiologists. In this article, we look at the issue of multisource fusion and redundant features. We proposed a CNN-LSTM and improved max value features optimization framework for COVID-19 classification to address these issues. The original images are acquired and the contrast is increased using a combination of filtering algorithms in the proposed architecture. The dataset is then augmented to increase its size, which is then used to train two deep learning networks called Modified EfficientNet B0 and CNN-LSTM. Both networks are built from scratch and extract information from the deep layers. Following the extraction of features, the serial based maximum value fusion technique is proposed to combine the best information of both deep models. However, a few redundant information is also noted; therefore, an improved max value based moth flame optimization algorithm is proposed. Through this algorithm, the best features are selected and finally classified through machine learning classifiers. The experimental process was conducted on three publically available datasets and achieved improved accuracy than the existing techniques. Moreover, the classifiers based comparison is also conducted and the cubic support vector machine gives better accuracy.
Collapse
Affiliation(s)
- Ameer Hamza
- Department of Computer Science, HITEC University, Taxila, Pakistan
| | | | - Shui-Hua Wang
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Abdullah Alqahtani
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shtwai Alsubai
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Adel Binbusayyis
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hany S. Hussein
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, Egypt
| | | | - Hammam Alshazly
- Faculty of Computers and Information, South Valley University, Qena, Egypt
| |
Collapse
|
14
|
Maqsood S, Damaševičius R, Maskeliūnas R. Multi-Modal Brain Tumor Detection Using Deep Neural Network and Multiclass SVM. Medicina (B Aires) 2022; 58:medicina58081090. [PMID: 36013557 PMCID: PMC9413317 DOI: 10.3390/medicina58081090] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/05/2023] Open
Abstract
Background and Objectives: Clinical diagnosis has become very significant in today's health system. The most serious disease and the leading cause of mortality globally is brain cancer which is a key research topic in the field of medical imaging. The examination and prognosis of brain tumors can be improved by an early and precise diagnosis based on magnetic resonance imaging. For computer-aided diagnosis methods to assist radiologists in the proper detection of brain tumors, medical imagery must be detected, segmented, and classified. Manual brain tumor detection is a monotonous and error-prone procedure for radiologists; hence, it is very important to implement an automated method. As a result, the precise brain tumor detection and classification method is presented. Materials and Methods: The proposed method has five steps. In the first step, a linear contrast stretching is used to determine the edges in the source image. In the second step, a custom 17-layered deep neural network architecture is developed for the segmentation of brain tumors. In the third step, a modified MobileNetV2 architecture is used for feature extraction and is trained using transfer learning. In the fourth step, an entropy-based controlled method was used along with a multiclass support vector machine (M-SVM) for the best features selection. In the final step, M-SVM is used for brain tumor classification, which identifies the meningioma, glioma and pituitary images. Results: The proposed method was demonstrated on BraTS 2018 and Figshare datasets. Experimental study shows that the proposed brain tumor detection and classification method outperforms other methods both visually and quantitatively, obtaining an accuracy of 97.47% and 98.92%, respectively. Finally, we adopt the eXplainable Artificial Intelligence (XAI) method to explain the result. Conclusions: Our proposed approach for brain tumor detection and classification has outperformed prior methods. These findings demonstrate that the proposed approach obtained higher performance in terms of both visually and enhanced quantitative evaluation with improved accuracy.
Collapse
|
15
|
LGMSU-Net: Local Features, Global Features, and Multi-Scale Features Fused the U-Shaped Network for Brain Tumor Segmentation. ELECTRONICS 2022. [DOI: 10.3390/electronics11121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Brain tumors are one of the deadliest cancers in the world. Researchers have conducted a lot of research work on brain tumor segmentation with good performance due to the rapid development of deep learning for assisting doctors in diagnosis and treatment. However, most of these methods cannot fully combine multiple feature information and their performances need to be improved. This study developed a novel network fusing local features representing detailed information, global features representing global information, and multi-scale features enhancing the model’s robustness to fully extract the features of brain tumors and proposed a novel axial-deformable attention module for modeling global information to improve the performance of brain tumor segmentation to assist clinicians in the automatic segmentation of brain tumors. Moreover, positional embeddings were used to make the network training faster and improve the method’s performance. Six metrics were used to evaluate the proposed method on the BraTS2018 dataset. Outstanding performance was obtained with Dice score, mean Intersection over Union, precision, recall, params, and inference time of 0.8735, 0.7756, 0.9477, 0.8769, 69.02 M, and 15.66 millisecond, respectively, for the whole tumor. Extensive experiments demonstrated that the proposed network obtained excellent performance and was helpful in providing supplementary advice to the clinicians.
Collapse
|
16
|
Jiang Y, Zhang Y, Lin X, Dong J, Cheng T, Liang J. SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer. Brain Sci 2022; 12:797. [PMID: 35741682 PMCID: PMC9221215 DOI: 10.3390/brainsci12060797] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
Brain tumor semantic segmentation is a critical medical image processing work, which aids clinicians in diagnosing patients and determining the extent of lesions. Convolutional neural networks (CNNs) have demonstrated exceptional performance in computer vision tasks in recent years. For 3D medical image tasks, deep convolutional neural networks based on an encoder-decoder structure and skip-connection have been frequently used. However, CNNs have the drawback of being unable to learn global and remote semantic information well. On the other hand, the transformer has recently found success in natural language processing and computer vision as a result of its usage of a self-attention mechanism for global information modeling. For demanding prediction tasks, such as 3D medical picture segmentation, local and global characteristics are critical. We propose SwinBTS, a new 3D medical picture segmentation approach, which combines a transformer, convolutional neural network, and encoder-decoder structure to define the 3D brain tumor semantic segmentation job as a sequence-to-sequence prediction challenge in this research. To extract contextual data, the 3D Swin Transformer is utilized as the network's encoder and decoder, and convolutional operations are employed for upsampling and downsampling. Finally, we achieve segmentation results using an improved Transformer module that we built for increasing detail feature extraction. Extensive experimental results on the BraTS 2019, BraTS 2020, and BraTS 2021 datasets reveal that SwinBTS outperforms state-of-the-art 3D algorithms for brain tumor segmentation on 3D MRI scanned images.
Collapse
Affiliation(s)
| | - Yuan Zhang
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China; (Y.J.); (X.L.); (J.D.); (T.C.); (J.L.)
| | | | | | | | | |
Collapse
|
17
|
A New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifier. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3236305. [PMID: 35463245 PMCID: PMC9023211 DOI: 10.1155/2022/3236305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
A brain tumor is an abnormal enlargement of cells if not properly diagnosed. Early detection of a brain tumor is critical for clinical practice and survival rates. Brain tumors arise in a variety of shapes, sizes, and features, with variable treatment options. Manual detection of tumors is difficult, time-consuming, and error-prone. Therefore, a significant requirement for computerized diagnostics systems for accurate brain tumor detection is present. In this research, deep features are extracted from the inceptionv3 model, in which score vector is acquired from softmax and supplied to the quantum variational classifier (QVR) for discrimination between glioma, meningioma, no tumor, and pituitary tumor. The classified tumor images have been passed to the proposed Seg-network where the actual infected region is segmented to analyze the tumor severity level. The outcomes of the reported research have been evaluated on three benchmark datasets such as Kaggle, 2020-BRATS, and local collected images. The model achieved greater than 90% detection scores to prove the proposed model's effectiveness.
Collapse
|
18
|
TTCNN: A Breast Cancer Detection and Classification towards Computer-Aided Diagnosis Using Digital Mammography in Early Stages. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073273] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Breast cancer is a major research area in the medical image analysis field; it is a dangerous disease and a major cause of death among women. Early and accurate diagnosis of breast cancer based on digital mammograms can enhance disease detection accuracy. Medical imagery must be detected, segmented, and classified for computer-aided diagnosis (CAD) systems to help the radiologists for accurate diagnosis of breast lesions. Therefore, an accurate breast cancer detection and classification approach is proposed for screening of mammograms. In this paper, we present a deep learning system that can identify breast cancer in mammogram screening images using an “end-to-end” training strategy that efficiently uses mammography images for computer-aided breast cancer recognition in the early stages. First, the proposed approach implements the modified contrast enhancement method in order to refine the detail of edges from the source mammogram images. Next, the transferable texture convolutional neural network (TTCNN) is presented to enhance the performance of classification and the energy layer is integrated in this work to extract the texture features from the convolutional layer. The proposed approach consists of only three layers of convolution and one energy layer, rather than the pooling layer. In the third stage, we analyzed the performance of TTCNN based on deep features of convolutional neural network models (InceptionResNet-V2, Inception-V3, VGG-16, VGG-19, GoogLeNet, ResNet-18, ResNet-50, and ResNet-101). The deep features are extracted by determining the best layers which enhance the classification accuracy. In the fourth stage, by using the convolutional sparse image decomposition approach, all the extracted feature vectors are fused and, finally, the best features are selected by using the entropy controlled firefly method. The proposed approach employed on DDSM, INbreast, and MIAS datasets and attained the average accuracy of 97.49%. Our proposed transferable texture CNN-based method for classifying screening mammograms has outperformed prior methods. These findings demonstrate that automatic deep learning algorithms can be easily trained to achieve high accuracy in diverse mammography images, and can offer great potential to improve clinical tools to minimize false positive and false negative screening mammography results.
Collapse
|
19
|
A Multi-Agent Deep Reinforcement Learning Approach for Enhancement of COVID-19 CT Image Segmentation. J Pers Med 2022; 12:jpm12020309. [PMID: 35207796 PMCID: PMC8880720 DOI: 10.3390/jpm12020309] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Currently, most mask extraction techniques are based on convolutional neural networks (CNNs). However, there are still numerous problems that mask extraction techniques need to solve. Thus, the most advanced methods to deploy artificial intelligence (AI) techniques are necessary. The use of cooperative agents in mask extraction increases the efficiency of automatic image segmentation. Hence, we introduce a new mask extraction method that is based on multi-agent deep reinforcement learning (DRL) to minimize the long-term manual mask extraction and to enhance medical image segmentation frameworks. A DRL-based method is introduced to deal with mask extraction issues. This new method utilizes a modified version of the Deep Q-Network to enable the mask detector to select masks from the image studied. Based on COVID-19 computed tomography (CT) images, we used DRL mask extraction-based techniques to extract visual features of COVID-19 infected areas and provide an accurate clinical diagnosis while optimizing the pathogenic diagnostic test and saving time. We collected CT images of different cases (normal chest CT, pneumonia, typical viral cases, and cases of COVID-19). Experimental validation achieved a precision of 97.12% with a Dice of 80.81%, a sensitivity of 79.97%, a specificity of 99.48%, a precision of 85.21%, an F1 score of 83.01%, a structural metric of 84.38%, and a mean absolute error of 0.86%. Additionally, the results of the visual segmentation clearly reflected the ground truth. The results reveal the proof of principle for using DRL to extract CT masks for an effective diagnosis of COVID-19.
Collapse
|
20
|
Fayaz M, Torokeldiev N, Turdumamatov S, Qureshi MS, Qureshi MB, Gwak J. An Efficient Methodology for Brain MRI Classification Based on DWT and Convolutional Neural Network. SENSORS 2021; 21:s21227480. [PMID: 34833556 PMCID: PMC8619601 DOI: 10.3390/s21227480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
In this paper, a model based on discrete wavelet transform and convolutional neural network for brain MR image classification has been proposed. The proposed model is comprised of three main stages, namely preprocessing, feature extraction, and classification. In the preprocessing, the median filter has been applied to remove salt-and-pepper noise from the brain MRI images. In the discrete wavelet transform, discrete Harr wavelet transform has been used. In the proposed model, 3-level Harr wavelet decomposition has been applied on the images to remove low-level detail and reduce the size of the images. Next, the convolutional neural network has been used for classifying the brain MR images into normal and abnormal. The convolutional neural network is also a prevalent classification method and has been widely used in different areas. In this study, the convolutional neural network has been used for brain MRI classification. The proposed methodology has been applied to the standard dataset, and for performance evaluation, we have used different performance evaluation measures. The results indicate that the proposed method provides good results with 99% accuracy. The proposed method results are then presented for comparison with some state-of-the-art algorithms where simply the proposed method outperforms the counterpart algorithms. The proposed model has been developed to be used for practical applications.
Collapse
Affiliation(s)
- Muhammad Fayaz
- Department of Computer Science, University of Central Asia, 310 Lenin Street, Naryn 722918, Kyrgyzstan; (M.F.); (M.S.Q.)
| | - Nurlan Torokeldiev
- Department of Mathematics and Natural Sciences, University of Central Asia, Khorog 736, Tajikistan;
| | - Samat Turdumamatov
- Department of Mathematics and Natural Sciences, University of Central Asia, 310 Lenin Street, Naryn 722918, Kyrgyzstan;
| | - Muhammad Shuaib Qureshi
- Department of Computer Science, University of Central Asia, 310 Lenin Street, Naryn 722918, Kyrgyzstan; (M.F.); (M.S.Q.)
| | - Muhammad Bilal Qureshi
- Department of Computer Science and IT, University of Lakki Marwat, Lakki Marwat 28420, KPK, Pakistan;
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju 27469, Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju 27469, Korea
- Department of AI Robotics Engineering, Korea National University of Transportation, Chungju 27469, Korea
- Department of IT & Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
- Correspondence: ; Tel.: +82-43-841-5852
| |
Collapse
|
21
|
Khan MA, Alhaisoni M, Tariq U, Hussain N, Majid A, Damaševičius R, Maskeliūnas R. COVID-19 Case Recognition from Chest CT Images by Deep Learning, Entropy-Controlled Firefly Optimization, and Parallel Feature Fusion. SENSORS (BASEL, SWITZERLAND) 2021; 21:7286. [PMID: 34770595 PMCID: PMC8588229 DOI: 10.3390/s21217286] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
In healthcare, a multitude of data is collected from medical sensors and devices, such as X-ray machines, magnetic resonance imaging, computed tomography (CT), and so on, that can be analyzed by artificial intelligence methods for early diagnosis of diseases. Recently, the outbreak of the COVID-19 disease caused many deaths. Computer vision researchers support medical doctors by employing deep learning techniques on medical images to diagnose COVID-19 patients. Various methods were proposed for COVID-19 case classification. A new automated technique is proposed using parallel fusion and optimization of deep learning models. The proposed technique starts with a contrast enhancement using a combination of top-hat and Wiener filters. Two pre-trained deep learning models (AlexNet and VGG16) are employed and fine-tuned according to target classes (COVID-19 and healthy). Features are extracted and fused using a parallel fusion approach-parallel positive correlation. Optimal features are selected using the entropy-controlled firefly optimization method. The selected features are classified using machine learning classifiers such as multiclass support vector machine (MC-SVM). Experiments were carried out using the Radiopaedia database and achieved an accuracy of 98%. Moreover, a detailed analysis is conducted and shows the improved performance of the proposed scheme.
Collapse
Affiliation(s)
- Muhammad Attique Khan
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (M.A.K.); (N.H.); (A.M.)
| | - Majed Alhaisoni
- College of Computer Science and Engineering, University of Ha’il, Ha’il 55211, Saudi Arabia;
| | - Usman Tariq
- Information Systems Department, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Khraj 11942, Saudi Arabia;
| | - Nazar Hussain
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (M.A.K.); (N.H.); (A.M.)
| | - Abdul Majid
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (M.A.K.); (N.H.); (A.M.)
| | - Robertas Damaševičius
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Rytis Maskeliūnas
- Department of Multimedia Engineering, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| |
Collapse
|
22
|
Hemorrhage Detection Based on 3D CNN Deep Learning Framework and Feature Fusion for Evaluating Retinal Abnormality in Diabetic Patients. SENSORS 2021; 21:s21113865. [PMID: 34205120 PMCID: PMC8199947 DOI: 10.3390/s21113865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023]
Abstract
Diabetic retinopathy (DR) is the main cause of blindness in diabetic patients. Early and accurate diagnosis can improve the analysis and prognosis of the disease. One of the earliest symptoms of DR are the hemorrhages in the retina. Therefore, we propose a new method for accurate hemorrhage detection from the retinal fundus images. First, the proposed method uses the modified contrast enhancement method to improve the edge details from the input retinal fundus images. In the second stage, a new convolutional neural network (CNN) architecture is proposed to detect hemorrhages. A modified pre-trained CNN model is used to extract features from the detected hemorrhages. In the third stage, all extracted feature vectors are fused using the convolutional sparse image decomposition method, and finally, the best features are selected by using the multi-logistic regression controlled entropy variance approach. The proposed method is evaluated on 1509 images from HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, and DIARETDB1 databases and achieves the average accuracy of 97.71%, which is superior to the previous works. Moreover, the proposed hemorrhage detection system attains better performance, in terms of visual quality and quantitative analysis with high accuracy, in comparison with the state-of-the-art methods.
Collapse
|
23
|
Seeland M, Mäder P. Multi-view classification with convolutional neural networks. PLoS One 2021; 16:e0245230. [PMID: 33434208 PMCID: PMC7802953 DOI: 10.1371/journal.pone.0245230] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/26/2020] [Indexed: 11/18/2022] Open
Abstract
Humans' decision making process often relies on utilizing visual information from different views or perspectives. However, in machine-learning-based image classification we typically infer an object's class from just a single image showing an object. Especially for challenging classification problems, the visual information conveyed by a single image may be insufficient for an accurate decision. We propose a classification scheme that relies on fusing visual information captured through images depicting the same object from multiple perspectives. Convolutional neural networks are used to extract and encode visual features from the multiple views and we propose strategies for fusing these information. More specifically, we investigate the following three strategies: (1) fusing convolutional feature maps at differing network depths; (2) fusion of bottleneck latent representations prior to classification; and (3) score fusion. We systematically evaluate these strategies on three datasets from different domains. Our findings emphasize the benefit of integrating information fusion into the network rather than performing it by post-processing of classification scores. Furthermore, we demonstrate through a case study that already trained networks can be easily extended by the best fusion strategy, outperforming other approaches by large margin.
Collapse
Affiliation(s)
- Marco Seeland
- Institute for Computer and Systems Engineering, Technische Universität Ilmenau, Ilmenau, Germany
| | - Patrick Mäder
- Institute for Computer and Systems Engineering, Technische Universität Ilmenau, Ilmenau, Germany
| |
Collapse
|