1
|
Martín-Noguerol T, Barousse R, Wessell DE, Rossi I, Luna A. Clinical applications of skeletal muscle diffusion tensor imaging. Skeletal Radiol 2023; 52:1639-1649. [PMID: 37083977 DOI: 10.1007/s00256-023-04350-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Diffusion tensor imaging (DTI) may allow the determination of new threshold values, based on water anisotropy, to differentiate between healthy muscle and various pathological processes. Additionally, it may quantify treatment monitoring or training effects. Most current studies have evaluated the potential of DTI of skeletal muscle to assess sports-related injuries or therapy, and training monitoring. Another critical area of application of this technique is the characterization and monitoring of primary and secondary myopathies. In this manuscript, we review the application of DTI in the evaluation of skeletal muscle in these and other novel clinical scenarios, with emphasis on the use of quantitative imaging-derived biomarkers. Finally, the main limitations of the introduction of DTI in the clinical setting and potential areas of future use are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Médica, Jaén, Spain
| |
Collapse
|
2
|
Rau A, Jungmann PM, Diallo TD, Reisert M, Kellner E, Eisenblaetter M, Bamberg F, Jung M. Application of diffusion microstructure imaging in musculoskeletal radiology - translation from head to shoulders. Eur Radiol 2023; 33:1565-1574. [PMID: 36307552 PMCID: PMC9935724 DOI: 10.1007/s00330-022-09202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Quantitative MRI techniques, such as diffusion microstructure imaging (DMI), are increasingly applied for advanced tissue characterization. We determined its value in rotator cuff (RC) muscle imaging by studying the association of DMI parameters to isometric strength and fat fraction (FF). METHODS Healthy individuals prospectively underwent 3T-MRI of the shoulder using DMI and chemical shift encoding-based water-fat imaging. RC muscles were segmented and quantitative MRI metrics (V-ISO, free fluid; V-intra, compartment inside of muscle fibers; V-extra, compartment outside of muscle fibers, and FF) were extracted. Isometric shoulder strength was quantified using specific clinical tests. Sex-related differences were assessed with Student's t. Association of DMI-metrics, FF, and strength was tested. A factorial two-way ANOVA was performed to compare the main effects of sex and external/internal strength-ratio and their interaction effects on quantitative imaging parameters ratios of infraspinatus/subscapularis. RESULTS Among 22 participants (mean age: 26.7 ± 3.1 years, 50% female, mean BMI: 22.6 ± 1.9 kg/m2), FF of the individual RC muscles did not correlate with strength or DMI parameters (all p > 0.05). Subjects with higher V-intra (r = 0.57 to 0.87, p < 0.01) and lower V-ISO (r = -0.6 to -0.88, p < 0.01) had higher internal and external rotation strength. Moreover, V-intra was higher and V-ISO was lower in all RC muscles in males compared to female subjects (all p < 0.01). There was a sex-independent association of external/internal strength-ratio with the ratio of V-extra of infraspinatus/subscapularis (p = 0.02). CONCLUSIONS Quantitative DMI parameters may provide incremental information about muscular function and microstructure in young athletes and may serve as a potential biomarker. KEY POINTS • Diffusion microstructure imaging was successfully applied to non-invasively assess the microstructure of rotator cuff muscles in healthy volunteers. • Sex-related differences in the microstructural composition of the rotator cuff were observed. • Muscular microstructural metrics correlated with rotator cuff strength and may serve as an imaging biomarker of muscular integrity and function.
Collapse
Affiliation(s)
- Alexander Rau
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| | - Pia M Jungmann
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Thierno D Diallo
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Marco Reisert
- Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Elias Kellner
- Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Michel Eisenblaetter
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Matthias Jung
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| |
Collapse
|
3
|
Forsting J, Rehmann R, Rohm M, Güttsches AK, Froeling M, Kan HE, Tegenthoff M, Vorgerd M, Schlaffke L. Robustness and stability of volume-based tractography in a multicenter setting. NMR IN BIOMEDICINE 2022; 35:e4707. [PMID: 35102637 DOI: 10.1002/nbm.4707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Muscle diffusion tensor imaging (mDTI)-based tractography is a promising tool with which to detect subclinical changes in muscle injuries and to evaluate pathophysiology in neuromuscular diseases. Classic region of interest (ROI)-based tractography is very time-consuming and requires an examiner with extensive experience. (Semi)automatic approaches such as volume-based tractography (VBT) can diminish this problem but its robustness and stability are unknown. The aim of the current study was to assess the performance of VBT in a multicenter setting and to evaluate semiautomatic segmentation approaches in the analysis of VBT-derived data in terms of the comparability of the outcome measures. Five traveling volunteers underwent 3-T mDTI of seven calf muscles of both legs at six different MR sites. Tract properties and diffusion metrics were calculated using VBT. Within-subject coefficients of variance (wsCVs) and intraclass correlation coefficients (ICCs) were calculated to assess the multicenter reproducibility of tract properties such as tract density (TD), mean tract length, volume and tract propagation angle, and diffusion metrics such as fractional anisotropy, mean diffusivity, axial diffusivity (λ1 ) and radial diffusivity in traveling subjects. Furthermore, 50 individual datasets from five different centers (10 datasets per center) were pooled to assess the feasibility of VBT with manual and semiautomatic segmentation. To assess the differences of tract properties and diffusion metrics between segmentation approaches an ANOVA was performed, and ICC and Bland-Altman plots were analyzed. wsCVs and ICCs showed good reproducibility of the tract properties TD and volume, as well as diffusion metrics. ANOVA showed no significant differences between manual and semiautomatic approaches. ICCs were excellent (≥ 0.992) and Bland-Altman analysis did not reveal any systemic bias between the methods. Tract properties and diffusion metrics derived from VBT showed good comparability among centers. Semiautomatic approaches revealed excellent agreement with gold standard of manual segmentation. These findings suggest that pooling data from different centers to construct a reference database for tractography results is feasible using semiautomatic segmentation approaches.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hermien E Kan
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Duchenne Center, Leiden, The Netherlands
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|