1
|
Qi Y, Wei L, Yang J, Xu J, Wang H, Yu Q, Shen G, Cao Y. CQENet: A segmentation model for nasopharyngeal carcinoma based on confidence quantitative evaluation. Comput Med Imaging Graph 2025; 123:102525. [PMID: 40107148 DOI: 10.1016/j.compmedimag.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Accurate segmentation of the tumor regions of nasopharyngeal carcinoma (NPC) is of significant importance for radiotherapy of NPC. However, the precision of existing automatic segmentation methods for NPC remains inadequate, primarily manifested in the difficulty of tumor localization and the challenges in delineating blurred boundaries. Additionally, the black-box nature of deep learning models leads to insufficient quantification of the confidence in the results, preventing users from directly understanding the model's confidence in its predictions, which severely impacts the clinical application of deep learning models. This paper proposes an automatic segmentation model for NPC based on confidence quantitative evaluation (CQENet). To address the issue of insufficient confidence quantification in NPC segmentation results, we introduce a confidence assessment module (CAM) that enables the model to output not only the segmentation results but also the confidence in those results, aiding users in understanding the uncertainty risks associated with model outputs. To address the difficulty in localizing the position and extent of tumors, we propose a tumor feature adjustment module (FAM) for precise tumor localization and extent determination. To address the challenge of delineating blurred tumor boundaries, we introduce a variance attention mechanism (VAM) to assist in edge delineation during fine segmentation. We conducted experiments on a multicenter NPC dataset, validating that our proposed method is effective and superior to existing state-of-the-art models, possessing considerable clinical application value.
Collapse
Affiliation(s)
- Yiqiu Qi
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Lijun Wei
- Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China.
| | - Jiachen Xu
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Hongfei Wang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Qi Yu
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Guoguang Shen
- Peoples Hospital of Naiman Banner, Inner Mongolia, China
| | - Yubo Cao
- Department of Medical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Castle PE, Han PKJ. On the Nose: Reducing Nasopharyngeal Cancer-Related Mortality Using Risk-Based Epstein-Barr Virus Serology Screening. J Clin Oncol 2025; 43:1-3. [PMID: 39353162 DOI: 10.1200/jco-24-01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Philip E Castle
- Division of Cancer Prevention, US National Cancer Institute, Rockville, MD
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Rockville, MD
| | - Paul K J Han
- Division of Cancer Control and Population Sciences, US National Cancer Institute, Rockville, MD
| |
Collapse
|
3
|
Wang Y, Zhang H, Wang H, Hu Y, Wen Z, Deng H, Huang D, Xiang L, Zheng Y, Yang L, Su L, Li Y, Liu F, Wang P, Guo S, Pang H, Zhou P. Development of a neoadjuvant chemotherapy efficacy prediction model for nasopharyngeal carcinoma integrating magnetic resonance radiomics and pathomics: a multi-center retrospective study. BMC Cancer 2024; 24:1501. [PMID: 39639211 PMCID: PMC11619272 DOI: 10.1186/s12885-024-13235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE This study aimed to develop and validate a predictive model for assessing the efficacy of neoadjuvant chemotherapy (NACT) in nasopharyngeal carcinoma (NPC) by integrating radiomics and pathomics features using a particle swarm optimization-supported support vector machine (PSO-SVM). METHODS A retrospective multi-center study was conducted, which included 389 NPC patients who received NACT from three institutions. Radiomics features were extracted from magnetic resonance imaging scans, while pathomics features were derived from histopathological images. A total of 2,667 radiomics features and 254 pathomics features were initially extracted. Feature selection involved intra-class correlation coefficient evaluation, Mann-Whitney U test, Spearman correlation analysis, and least absolute shrinkage and selection operator regression. The PSO-SVM model was constructed and validated using 10-fold cross-validation on the training set and further evaluated using an external validation set. Model performance was assessed using the area under the curve (AUC) of the receiver operating characteristic curve, calibration curves, and decision curve analysis. RESULTS Eight significant predictive features (five radiomics and three pathomics) were identified. The PSO-SVM radiopathomics model achieved superior performance compared to models based solely on radiomics or pathomics features. The AUCs for the PSO-SVM radiopathomics model were 0.917 (95% CI: 0.887-0.948) in internal validation and 0.814 (95% CI: 0.742-0.887) in external validation. Calibration curves demonstrated good agreement between predicted probabilities and actual outcomes. Decision curve analysis showed that the PSO-SVM radiopathomics model provided higher clinical net benefit over a wider range of risk thresholds compared to other models. CONCLUSION The PSO-SVM radiopathomics model effectively integrates radiomics and pathomics features, offering enhanced predictive accuracy and clinical utility for assessing NACT efficacy in NPC. The multi-center approach and robust validation underscore its potential for personalized treatment planning, supporting improved clinical decision-making for NPC patients.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, 646000, China
| | - Huaiwen Zhang
- Department of Radiotherapy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, China
| | - Huan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yiheng Hu
- Department of Medical Imaging, Southwest Medical University, Luzhou, 646000, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, 646000, China
| | - Hairui Deng
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, 646000, China
| | - Delong Huang
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yun Zheng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lei Su
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, 646000, China
| | - Yunfei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Fang Liu
- Qingyang People's Hospital, Qingyang, 745000, China.
| | - Peng Wang
- Xinzhou People's Hospital, Xinzhou Hospital of Shanxi Medical University, Xinzhou, 034000, China.
| | - Shengmin Guo
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Ping Zhou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Dang LH, Hung SH, Le NTN, Chuang WK, Wu JY, Huang TC, Le NQK. Enhancing Nasopharyngeal Carcinoma Survival Prediction: Integrating Pre- and Post-Treatment MRI Radiomics with Clinical Data. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2474-2489. [PMID: 38689151 PMCID: PMC11522233 DOI: 10.1007/s10278-024-01109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Recurrences are frequent in nasopharyngeal carcinoma (NPC) despite high remission rates with treatment, leading to considerable morbidity. This study aimed to develop a prediction model for NPC survival by harnessing both pre- and post-treatment magnetic resonance imaging (MRI) radiomics in conjunction with clinical data, focusing on 3-year progression-free survival (PFS) as the primary outcome. Our comprehensive approach involved retrospective clinical and MRI data collection of 276 eligible NPC patients from three independent hospitals (180 in the training cohort, 46 in the validation cohort, and 50 in the external cohort) who underwent MRI scans twice, once within 2 months prior to treatment and once within 10 months after treatment. From the contrast-enhanced T1-weighted images before and after treatment, 3404 radiomics features were extracted. These features were not only derived from the primary lesion but also from the adjacent lymph nodes surrounding the tumor. We conducted appropriate feature selection pipelines, followed by Cox proportional hazards models for survival analysis. Model evaluation was performed using receiver operating characteristic (ROC) analysis, the Kaplan-Meier method, and nomogram construction. Our study unveiled several crucial predictors of NPC survival, notably highlighting the synergistic combination of pre- and post-treatment data in both clinical and radiomics assessments. Our prediction model demonstrated robust performance, with an accuracy of AUCs of 0.66 (95% CI: 0.536-0.779) in the training cohort, 0.717 (95% CI: 0.536-0.883) in the testing cohort, and 0.827 (95% CI: 0.684-0.948) in validation cohort in prognosticating patient outcomes. Our study presented a novel and effective prediction model for NPC survival, leveraging both pre- and post-treatment clinical data in conjunction with MRI features. Its constructed nomogram provides potentially significant implications for NPC research, offering clinicians a valuable tool for individualized treatment planning and patient counseling.
Collapse
Affiliation(s)
- Luong Huu Dang
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Shih-Han Hung
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nhi Thao Ngoc Le
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | - Wei-Kai Chuang
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jeng-You Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Chieh Huang
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Xing X, Li L, Sun M, Yang J, Zhu X, Peng F, Du J, Feng Y. Deep-learning-based 3D super-resolution CT radiomics model: Predict the possibility of the micropapillary/solid component of lung adenocarcinoma. Heliyon 2024; 10:e34163. [PMID: 39071606 PMCID: PMC11279278 DOI: 10.1016/j.heliyon.2024.e34163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Invasive lung adenocarcinoma(ILA) with micropapillary (MPP)/solid (SOL) components has a poor prognosis. Preoperative identification is essential for decision-making for subsequent treatment. This study aims to construct and evaluate a super-resolution(SR) enhanced radiomics model designed to predict the presence of MPP/SOL components preoperatively to provide more accurate and individualized treatment planning. Methods Between March 2018 and November 2023, patients who underwent curative intent ILA resection were included in the study. We implemented a deep transfer learning network on CT images to improve their resolution, resulting in the acquisition of preoperative super-resolution CT (SR-CT) images. Models were developed using radiomic features extracted from CT and SR-CT images. These models employed a range of classifiers, including Logistic Regression (LR), Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Random Forest, Extra Trees, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Multilayer Perceptron (MLP). The diagnostic performance of the models was assessed by measuring the area under the curve (AUC). Result A total of 245 patients were recruited, of which 109 (44.5 %) were diagnosed with ILA with MPP/SOL components. In the analysis of CT images, the SVM model exhibited outstanding effectiveness, recording AUC scores of 0.864 in the training group and 0.761 in the testing group. When this SVM approach was used to develop a radiomics model with SR-CT images, it recorded AUCs of 0.904 in the training and 0.819 in the test cohorts. The calibration curves indicated a high goodness of fit, while decision curve analysis (DCA) highlighted the model's clinical utility. Conclusion The study successfully constructed and evaluated a deep learning(DL)-enhanced SR-CT radiomics model. This model outperformed conventional CT radiomics models in predicting MPP/SOL patterns in ILA. Continued research and broader validation are necessary to fully harness and refine the clinical potential of radiomics when combined with SR reconstruction technology.
Collapse
Affiliation(s)
- Xiaowei Xing
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liangping Li
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Mingxia Sun
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jiahu Yang
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Fang Peng
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jianzong Du
- Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yue Feng
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Wang CK, Wang TW, Yang YX, Wu YT. Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2024; 11:504. [PMID: 38790370 PMCID: PMC11118180 DOI: 10.3390/bioengineering11050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Nasopharyngeal carcinoma is a significant health challenge that is particularly prevalent in Southeast Asia and North Africa. MRI is the preferred diagnostic tool for NPC due to its superior soft tissue contrast. The accurate segmentation of NPC in MRI is crucial for effective treatment planning and prognosis. We conducted a search across PubMed, Embase, and Web of Science from inception up to 20 March 2024, adhering to the PRISMA 2020 guidelines. Eligibility criteria focused on studies utilizing DL for NPC segmentation in adults via MRI. Data extraction and meta-analysis were conducted to evaluate the performance of DL models, primarily measured by Dice scores. We assessed methodological quality using the CLAIM and QUADAS-2 tools, and statistical analysis was performed using random effects models. The analysis incorporated 17 studies, demonstrating a pooled Dice score of 78% for DL models (95% confidence interval: 74% to 83%), indicating a moderate to high segmentation accuracy by DL models. Significant heterogeneity and publication bias were observed among the included studies. Our findings reveal that DL models, particularly convolutional neural networks, offer moderately accurate NPC segmentation in MRI. This advancement holds the potential for enhancing NPC management, necessitating further research toward integration into clinical practice.
Collapse
Affiliation(s)
- Chih-Keng Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-K.W.)
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ting-Wei Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-K.W.)
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Ya-Xuan Yang
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| |
Collapse
|
7
|
Huang YC, Huang SM, Yeh JH, Chang TC, Tsan DL, Lin CY, Tu SJ. Utility of CT Radiomics and Delta Radiomics for Survival Evaluation in Locally Advanced Nasopharyngeal Carcinoma with Concurrent Chemoradiotherapy. Diagnostics (Basel) 2024; 14:941. [PMID: 38732355 PMCID: PMC11083477 DOI: 10.3390/diagnostics14090941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND A high incidence rate of nasopharyngeal carcinoma (NPC) has been observed in Southeast Asia compared to other parts of the world. Radiomics is a computational tool to predict outcomes and may be used as a prognostic biomarker for advanced NPC treated with concurrent chemoradiotherapy. Recently, radiomic analysis of the peripheral tumor microenvironment (TME), which is the region surrounding the gross tumor volume (GTV), has shown prognostic usefulness. In this study, not only was gross tumor volume (GTVt) analyzed but also tumor peripheral regions (GTVp) were explored in terms of the TME concept. Both radiomic features and delta radiomic features were analyzed using CT images acquired in a routine radiotherapy process. METHODS A total of 50 patients with NPC stages III, IVA, and IVB were enrolled between September 2004 and February 2014. Survival models were built using Cox regression with clinical factors (i.e., gender, age, overall stage, T stage, N stage, and treatment dose) and radiomic features. Radiomic features were extracted from GTVt and GTVp. GTVp was created surrounding GTVt for TME consideration. Furthermore, delta radiomics, which is the longitudinal change in quantitative radiomic features, was utilized for analysis. Finally, C-index values were computed using leave-one-out cross-validation (LOOCV) to evaluate the performances of all prognosis models. RESULTS Models were built for three different clinical outcomes, including overall survival (OS), local recurrence-free survival (LRFS), and progression-free survival (PFS). The range of the C-index in clinical factor models was (0.622, 0.729). All radiomics models, including delta radiomics models, were in the range of (0.718, 0.872). Among delta radiomics models, GTVt and GTVp were in the range of (0.833, 0.872) and (0.799, 0.834), respectively. CONCLUSIONS Radiomic analysis on the proximal region surrounding the gross tumor volume of advanced NPC patients for survival outcome evaluation was investigated, and preliminary positive results were obtained. Radiomic models and delta radiomic models demonstrated performance that was either superior to or comparable with that of conventional clinical models.
Collapse
Affiliation(s)
- Yen-Cho Huang
- Department of Radiation Oncology, Keelung Chang Gung Memorial Hospital, Keelung 20445, Taiwan; (Y.-C.H.); (S.-M.H.); (J.-H.Y.)
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Shih-Ming Huang
- Department of Radiation Oncology, Keelung Chang Gung Memorial Hospital, Keelung 20445, Taiwan; (Y.-C.H.); (S.-M.H.); (J.-H.Y.)
| | - Jih-Hsiang Yeh
- Department of Radiation Oncology, Keelung Chang Gung Memorial Hospital, Keelung 20445, Taiwan; (Y.-C.H.); (S.-M.H.); (J.-H.Y.)
| | - Tung-Chieh Chang
- Department of Radiation Oncology, Linkuo Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (T.-C.C.); (D.-L.T.)
| | - Din-Li Tsan
- Department of Radiation Oncology, Linkuo Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (T.-C.C.); (D.-L.T.)
| | - Chien-Yu Lin
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Department of Radiation Oncology, Linkuo Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (T.-C.C.); (D.-L.T.)
- Particle Physics and Beam Delivery Core Laboratory, Linkou Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Shu-Ju Tu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| |
Collapse
|
8
|
Lai J, Lin P, Zhuang J, Xie Z, Zhou H, Yang D, Chen Z, Jiang D, Huang J. Development and internal validation of a nomogram based on peripheral blood inflammatory markers for predicting prognosis in nasopharyngeal carcinoma. Cancer Med 2024; 13:e7135. [PMID: 38549496 PMCID: PMC10979185 DOI: 10.1002/cam4.7135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Inflammatory markers, including the product of neutrophil count, platelet count, and monocyte count divided by lymphocyte count (PIV) and the platelet-to-white blood cell ratio (PWR), have not been previously reported as prognostic factors in nasopharyngeal carcinoma (NPC) patients. In order to predict overall survival (OS) in NPC patients, our goal was to create and internally evaluate a nomogram based on inflammatory markers (PIV, PWR). METHODS A retrospective study was done on patients who received an NPC diagnosis between January 2015 and December 2018. After identifying independent prognostic indicators linked to OS using Cox proportional hazards regression analysis, we created a nomogram with the factors we had chosen. RESULTS A total of 630 NPC patients in all were split into training (n = 441) and validation sets (n = 189) after being enrolled in a population-based study in 2015-2018 and monitored for a median of 5.9 years. In the training set, the age, PIV, and PWR, selected as independent predictors for OS via multivariate Cox's regression model, were chosen to develop a nomogram. Both training and validation cohorts had C-indices of 0.850 (95% confidence interval [CI]: 0.768-0.849) and 0.851 (95% CI: 0.765-0.877). Furthermore, compared with traditional TNM staging, our nomogram demonstrated greater accuracy in predicting patient outcomes. The risk stratification model derived from our prediction model may facilitate personalized treatment strategies for NPC patients. CONCLUSION Our findings confirmed the prognostic significance of the PWR and PIV in NPC. High PIV levels (>363.47) and low PWR (≤36.42) values are associated with worse OS in NPC patients.
Collapse
Affiliation(s)
- Jing Lai
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Peixin Lin
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Jiafeng Zhuang
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Zhiwei Xie
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Hechao Zhou
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Donghong Yang
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Zihong Chen
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Danxian Jiang
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Jing Huang
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| |
Collapse
|
9
|
Gupta U, Paluru N, Nankani D, Kulkarni K, Awasthi N. A comprehensive review on efficient artificial intelligence models for classification of abnormal cardiac rhythms using electrocardiograms. Heliyon 2024; 10:e26787. [PMID: 38562492 PMCID: PMC10982903 DOI: 10.1016/j.heliyon.2024.e26787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Deep learning has made many advances in data classification using electrocardiogram (ECG) waveforms. Over the past decade, data science research has focused on developing artificial intelligence (AI) based models that can analyze ECG waveforms to identify and classify abnormal cardiac rhythms accurately. However, the primary drawback of the current AI models is that most of these models are heavy, computationally intensive, and inefficient in terms of cost for real-time implementation. In this review, we first discuss the current state-of-the-art AI models utilized for ECG-based cardiac rhythm classification. Next, we present some of the upcoming modeling methodologies which have the potential to perform real-time implementation of AI-based heart rhythm diagnosis. These models hold significant promise in being lightweight and computationally efficient without compromising the accuracy. Contemporary models predominantly utilize 12-lead ECG for cardiac rhythm classification and cardiovascular status prediction, increasing the computational burden and making real-time implementation challenging. We also summarize research studies evaluating the potential of efficient data setups to reduce the number of ECG leads without affecting classification accuracy. Lastly, we present future perspectives on AI's utility in precision medicine by providing opportunities for accurate prediction and diagnostics of cardiovascular status in patients.
Collapse
Affiliation(s)
- Utkarsh Gupta
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | - Naveen Paluru
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | - Deepankar Nankani
- Department of Computer Science and Engineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Kanchan Kulkarni
- IHU-LIRYC, Heart Rhythm Disease Institute, Fondation Bordeaux Université, Pessac, Bordeaux, F-33000, France
- University of Bordeaux, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000, France
| | - Navchetan Awasthi
- Faculty of Science, Mathematics and Computer Science, Informatics Institute, University of Amsterdam, Amsterdam, 1090 GH, the Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, 1081 HV, the Netherlands
| |
Collapse
|
10
|
Mese I, Altintas Taslicay C, Sivrioglu AK. Synergizing photon-counting CT with deep learning: potential enhancements in medical imaging. Acta Radiol 2024; 65:159-166. [PMID: 38146126 DOI: 10.1177/02841851231217995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
This review article highlights the potential of integrating photon-counting computed tomography (CT) and deep learning algorithms in medical imaging to enhance diagnostic accuracy, improve image quality, and reduce radiation exposure. The use of photon-counting CT provides superior image quality, reduced radiation dose, and material decomposition capabilities, while deep learning algorithms excel in automating image analysis and improving diagnostic accuracy. The integration of these technologies can lead to enhanced material decomposition and classification, spectral image analysis, predictive modeling for individualized medicine, workflow optimization, and radiation dose management. However, data requirements, computational resources, and regulatory and ethical concerns remain challenges that need to be addressed to fully realize the potential of this technology. The fusion of photon-counting CT and deep learning algorithms is poised to revolutionize medical imaging and transform patient care.
Collapse
Affiliation(s)
- Ismail Mese
- Department of Radiology, Health Sciences University, Erenkoy Mental Health and Neurology Training and Research Hospital, Istanbul, Turkey
| | | | | |
Collapse
|
11
|
Wang Q, An P, Song L, Liu J, Liu J. Prognostic modeling for nasopharyngeal carcinoma (NC) undergoing concurrent chemoradiotherapy using clinical and enhanced MRI-Delta radiomics data: A preliminary study. Technol Health Care 2024; 32:2381-2394. [PMID: 38517817 DOI: 10.3233/thc-231173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NC) is one of the prevalent malignancies of the head and neck region with poor prognosis. OBJECTIVE The aim of this study is to establish a predictive model for assessing NC prognosis based on clinical and MR radiomics data, subsequently to develop a nomogram for practical application. METHODS Retrospective analysis was conducted on clinical and imaging data collected between May 2010 and August 2018, involving 211 patients diagnosed with histologically confirmed NC who received concurrent chemoradiotherapy or radical surgery in Xiangyang No. 1 People's Hospital. According to 5-10 years of follow-up results, the patients were divided into two groups: the study group (n= 76), which experienced recurrence, metastasis, or death, and the control group (n= 135), characterized by normal survival. Training and testing subsets were established at a 7:3 ratio, with a predefined time cutoff. In the training set, three prediction models were established: a clinical data model, an imaging model, and a combined model using the integrated variation in clinical characteristics along with MR radiomics parameters (Delta-Radscore) observed before and after concurrent chemoradiotherapy. Model performance was compared using Delong's test, and net clinical benefit was assessed via decision curve analysis (DCA). Then, external validation was conducted on the test set, and finally a nomogram predicting NC prognosis was created. RESULTS Univariate analysis identified that the risk factors impacting the prognosis of NC included gender, pathological type, neutrophil to lymphocyte ratio (NLR), degree of tumor differentiation, MR enhancement pattern, and Delta-Radscore (P< 0.05). The combined model established based on the abovementioned factors exhibited significantly higher predictive performance [AUC: 0.874, 95% CI (0.810-0.923)] than that of the clinical data model [AUC: 0.650, 95% CI (0.568-0.727)] and imaging model [AUC: 0.824, 95% CI (0.753-0.882)]. DCA also demonstrated superior clinical net benefit in the combined model, a finding further verified by results from the test set. The developed nomogram, based on the combined model, exhibited promising performance in clinical applications. CONCLUSION The Delta-Radscore derived from MR radiomics data before and after concurrent chemoradiotherapy helps enhance the performance of the NC prognostic model. The combined model and resultant nomogram provide valuable support for clinical decision-making in NC treatment, ultimately contributing to an improved survival rate.
Collapse
Affiliation(s)
- Qiuyang Wang
- Department of ENT, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peng An
- Department of Radiology, Xiangyang First People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Lina Song
- Department of Radiology, Xiangyang First People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Junjie Liu
- Department of Radiology, Xiangyang First People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Jisheng Liu
- Department of ENT, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
He Z, Zhang K, Zhao N, Wang Y, Hou W, Meng Q, Li C, Chen J, Li J. Deep learning for real-time detection of nasopharyngeal carcinoma during nasopharyngeal endoscopy. iScience 2023; 26:107463. [PMID: 37720094 PMCID: PMC10502364 DOI: 10.1016/j.isci.2023.107463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 09/19/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is known for high curability during early stage of the disease, and early diagnosis relies on nasopharyngeal endoscopy and subsequent pathological biopsy. To enhance the early diagnosis rate by aiding physicians in the real-time identification of NPC and directing biopsy site selection during endoscopy, we assembled a dataset comprising 2,429 nasopharyngeal endoscopy video frames from 690 patients across three medical centers. With these data, we developed a deep learning-based NPC detection model using the you only look once (YOLO) network. Our model demonstrated high performance, with precision, recall, mean average precision, and F1-score values of 0.977, 0.943, 0.977, and 0.960, respectively, for internal test set and 0.825, 0.743, 0.814, and 0.780 for external test set at 0.5 intersection over union. Remarkably, our model demonstrated a high inference speed (52.9 FPS), surpassing the average frame rate (25.0 FPS) of endoscopy videos, thus making real-time detection in endoscopy feasible.
Collapse
Affiliation(s)
- Zicheng He
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou Key Laboratory of Otorhinolaryngology, Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou 510080, P.R.China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530000, P.R.China
| | - Kai Zhang
- School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R.China
| | - Nan Zhao
- School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R.China
| | - Yongquan Wang
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou Key Laboratory of Otorhinolaryngology, Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou 510080, P.R.China
| | | | - Qinxiang Meng
- Guangzhou First People’s Hospital, Guangzhou 510180, P.R.China
| | - Chunwei Li
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou Key Laboratory of Otorhinolaryngology, Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou 510080, P.R.China
| | - Junzhou Chen
- School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R.China
| | - Jian Li
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou Key Laboratory of Otorhinolaryngology, Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou 510080, P.R.China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530000, P.R.China
| |
Collapse
|
13
|
Yang X, Wu J, Chen X. Application of Artificial Intelligence to the Diagnosis and Therapy of Nasopharyngeal Carcinoma. J Clin Med 2023; 12:jcm12093077. [PMID: 37176518 PMCID: PMC10178972 DOI: 10.3390/jcm12093077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Artificial intelligence (AI) is an interdisciplinary field that encompasses a wide range of computer science disciplines, including image recognition, machine learning, human-computer interaction, robotics and so on. Recently, AI, especially deep learning algorithms, has shown excellent performance in the field of image recognition, being able to automatically perform quantitative evaluation of complex medical image features to improve diagnostic accuracy and efficiency. AI has a wider and deeper application in the medical field of diagnosis, treatment and prognosis. Nasopharyngeal carcinoma (NPC) occurs frequently in southern China and Southeast Asian countries and is the most common head and neck cancer in the region. Detecting and treating NPC early is crucial for a good prognosis. This paper describes the basic concepts of AI, including traditional machine learning and deep learning algorithms, and their clinical applications of detecting and assessing NPC lesions, facilitating treatment and predicting prognosis. The main limitations of current AI technologies are briefly described, including interpretability issues, privacy and security and the need for large amounts of annotated data. Finally, we discuss the remaining challenges and the promising future of using AI to diagnose and treat NPC.
Collapse
Affiliation(s)
- Xinggang Yang
- Division of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Guoxue Road 37, Chengdu 610041, China
| | - Juan Wu
- Out-Patient Department, West China Hospital, Sichuan University, Guoxue Road 37, Chengdu 610041, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Guoxue Road 37, Chengdu 610041, China
| |
Collapse
|
14
|
Zhou Q, Li Y, Li L, Sun N, Zhang H, Jiang J, Du T, Mo Y, Aldeen A, Xiao R, Chen Y, Wang S, Liu M, Li C, Feng X. Radiosensitization of Nasopharyngeal Carcinoma by Graphene Oxide Nanosheets to Reduce Bcl-2 Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4245-4256. [PMID: 36913208 DOI: 10.1021/acs.langmuir.2c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
There are many treatments for nasopharyngeal carcinoma (NPC), but none of them are very effective. Radiotherapy is used extensively in NPC treatment, but radioresistance is a major problem. Graphene oxide (GO) has been previously studied in cancer treatment, and this study is aimed to explore its role in radiosensitization of NPC. Therefore, graphene oxide nanosheets were prepared, and the relationship between GO and radioresistance was explored. The GO nanosheets were synthesized by a modified Hummers' method. The morphologies of the GO nanosheets were characterized by field-emission environmental scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The morphological changes and radiosensitivity of C666-1 and HK-1 cells with or without the GO nanosheets were observed by an inverted fluorescence microscopy and laser scanning confocal microscopy (LSCM). Colony formation assay and Western Blot were applied for analysis of NPC radiosensitivity. The as-synthesized GO nanosheets have lateral dimensions (sizes ∼1 μm) and exhibit a thin wrinkled two-dimensional lamellar structure with slight folds and crimped edges (thickness values ∼1 nm). C666-1 cells with the GO was significantly changed the morphology of cells postirradiation. The full field of view visualized by a microscope showed the shadow of dead cells or cell debris. The synthesized graphene oxide nanosheets inhibited cell proliferation, promoted cell apoptosis, and inhibited the expression of Bcl-2 in C666-1 and HK-1 cells but increased the level of Bax. The GO nanosheets could affect the cell apoptosis and reduce the pro-survival protein Bcl-2 related to the intrinsic mitochondrial pathway. The GO nanosheets could enhance radiosensitivity, which might be a radioactive material in NPC cells.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Otolaryngology-head and Neck Surgery, Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Yadong Li
- Chenzhou Maternal and Child Health Hospital, Chenzhou 423000, China
| | - Liya Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Nianzhe Sun
- Department of Orthopedics, Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Hanghao Zhang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Jiahui Jiang
- Department of Otolaryngology-head and Neck Surgery, Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Tao Du
- Department of Otolaryngology-head and Neck Surgery, Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Yan Mo
- Department of Otolaryngology-head and Neck Surgery, Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Alaa Aldeen
- Department of Otolaryngology-head and Neck Surgery, Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Runsha Xiao
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yiting Chen
- Department of Otolaryngology-head and Neck Surgery, Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shuanglian Wang
- Department of Otolaryngology-head and Neck Surgery, Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Mian Liu
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Chengmin Li
- Department of Otolaryngology-head and Neck Surgery, Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
- Department of Pathology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Xueping Feng
- Department of Otolaryngology-head and Neck Surgery, Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| |
Collapse
|
15
|
The Long Noncoding RNA Cytoskeleton Regulator RNA (CYTOR)/miRNA-24-3p Axis Facilitates Nasopharyngeal Carcinoma Progression by Modulating GAD1 Expression. JOURNAL OF ONCOLOGY 2023; 2023:6027860. [PMID: 36814556 PMCID: PMC9940962 DOI: 10.1155/2023/6027860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/24/2022] [Indexed: 02/16/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck epithelial carcinoma that is unusually prevalent in Southeast Asia. Noncoding RNAs, including lncRNA and miRNA, and their target genes are considered vital regulators of tumorigenesis and the progression of NPC. However, the detailed underlying mechanisms of GAD1 involved in the regulation of NPC need to be further elucidated. In the present study, we identified that GAD1 was significantly upregulated in NPC tissues. GAD1 overexpression is promoted, while genetic knockdown of GAD1 suppresses proliferation, colony formation, migration, and invasion of NPC cells. Bioinformatics analysis and a luciferase reporter assay demonstrated that GAD1 is a direct target gene of miR-24-3p. In NPC tissues, miR-24-3p was downregulated and the lncRNA CYTOR was upregulated. CYTOR was sponged to suppress the function of miR-24-3p. CYTOR regulates GAD1 expression via modulating miR-24-3p. The CYTOR/miR-24-3p/GAD1 axis is converged to modulate the growth, migration, and invasion of NPC cells. In conclusion, the study identified a novel axis for the regulation of NPC cell growth, providing new insights into the understanding of NPC.
Collapse
|
16
|
Li S, Wan X, Deng YQ, Hua HL, Li SL, Chen XX, Zeng ML, Zha Y, Tao ZZ. Predicting prognosis of nasopharyngeal carcinoma based on deep learning: peritumoral region should be valued. Cancer Imaging 2023; 23:14. [PMID: 36759889 PMCID: PMC9912633 DOI: 10.1186/s40644-023-00530-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The purpose of this study was to explore whether incorporating the peritumoral region to train deep neural networks could improve the performance of the models for predicting the prognosis of NPC. METHODS A total of 381 NPC patients who were divided into high- and low-risk groups according to progression-free survival were retrospectively included. Deeplab v3 and U-Net were trained to build segmentation models for the automatic segmentation of the tumor and suspicious lymph nodes. Five datasets were constructed by expanding 5, 10, 20, 40, and 60 pixels outward from the edge of the automatically segmented region. Inception-Resnet-V2, ECA-ResNet50t, EfficientNet-B3, and EfficientNet-B0 were trained with the original, segmented, and the five new constructed datasets to establish the classification models. The receiver operating characteristic curve was used to evaluate the performance of each model. RESULTS The Dice coefficients of Deeplab v3 and U-Net were 0.741(95%CI:0.722-0.760) and 0.737(95%CI:0.720-0.754), respectively. The average areas under the curve (aAUCs) of deep learning models for classification trained with the original and segmented images and with images expanded by 5, 10, 20, 40, and 60 pixels were 0.717 ± 0.043, 0.739 ± 0.016, 0.760 ± 0.010, 0.768 ± 0.018, 0.802 ± 0.013, 0.782 ± 0.039, and 0.753 ± 0.014, respectively. The models trained with the images expanded by 20 pixels obtained the best performance. CONCLUSIONS The peritumoral region NPC contains information related to prognosis, and the incorporation of this region could improve the performance of deep learning models for prognosis prediction.
Collapse
Affiliation(s)
- Song Li
- grid.89957.3a0000 0000 9255 8984Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029 China ,grid.412632.00000 0004 1758 2270Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Xia Wan
- grid.510937.9Department of Otolaryngology-Head & Neck Surgery, Ezhou Central Hospital, No. 9 Wenxing Road, Ezhou, 436000 P.R. China
| | - Yu-Qin Deng
- grid.412632.00000 0004 1758 2270Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Hong-Li Hua
- grid.412632.00000 0004 1758 2270Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Sheng-Lan Li
- grid.412632.00000 0004 1758 2270Department of Radiology, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Xi-Xiang Chen
- grid.412632.00000 0004 1758 2270Department of Radiology, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Man-Li Zeng
- grid.510937.9Department of Otolaryngology-Head & Neck Surgery, Ezhou Central Hospital, No. 9 Wenxing Road, Ezhou, 436000 P.R. China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
17
|
Kulanthaivelu R, Kohan A, Hinzpeter R, Liu ZA, Hope A, Huang SH, Waldron J, O’Sullivan B, Ortega C, Metser U, Veit-Haibach P. Prognostic value of PET/CT and MR-based baseline radiomics among patients with non-metastatic nasopharyngeal carcinoma. Front Oncol 2022; 12:952763. [PMID: 36353565 PMCID: PMC9638017 DOI: 10.3389/fonc.2022.952763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2023] Open
Abstract
PURPOSE Radiomics is an emerging imaging assessment technique that has shown promise in predicting survival among nasopharyngeal carcinoma (NPC) patients. Studies so far have focused on PET or MR-based radiomics independently. The aim of our study was to evaluate the prognostic value of clinical and radiomic parameters derived from both PET/CT and MR. METHODS Retrospective evaluation of 124 NPC patients with PET/CT and radiotherapy planning MR (RP-MR). Primary tumors were segmented using dedicated software (LIFEx version 6.1) from PET, CT, contrast-enhanced T1-weighted (T1-w), and T2-weighted (T2-w) MR sequences with 376 radiomic features extracted. Summary statistics describe patient, disease, and treatment characteristics. The Kaplan-Meier (KM) method estimates overall survival (OS) and progression-free survival (PFS). Clinical factors selected based on univariable analysis and the multivariable Cox model were subsequently constructed with radiomic features added. RESULTS The final models comparing clinical, clinical + RP-MR, clinical + PET/CT and clinical + RP-MR + PET/CT for OS and PFS demonstrated that combined radiomic signatures were significantly associated with improved survival prognostication (AUC 0.62 vs 0.81 vs 0.75 vs 0.86 at 21 months for PFS and 0.56 vs 0.85 vs 0.79 vs 0.96 at 24 months for OS). Clinical + RP-MR features initially outperform clinical + PET/CT for both OS and PFS (<18 months), and later in the clinical course for PFS (>42 months). CONCLUSION Our study demonstrated that PET/CT-based radiomic features may improve survival prognostication among NPC patients when combined with baseline clinical and MR-based radiomic features.
Collapse
Affiliation(s)
- Roshini Kulanthaivelu
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Andres Kohan
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Ricarda Hinzpeter
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Andrew Hope
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Shao Hui Huang
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - John Waldron
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Brian O’Sullivan
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Machine Learning Based on MRI DWI Radiomics Features for Prognostic Prediction in Nasopharyngeal Carcinoma. Cancers (Basel) 2022; 14:cancers14133201. [PMID: 35804973 PMCID: PMC9264891 DOI: 10.3390/cancers14133201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary In the past, radiomics studies of nasopharyngeal carcinoma (NPC) were only based on basic MR sequences. Previous studies have shown that radiomics methods based on T2-weighted imaging and contrast-enhanced T1-weighted imaging have been successfully used to improve the prognosis of patients with nasopharyngeal carcinoma. The purpose of this study was to explore the predictive efficacy of radiomics analyses based on readout-segmented echo-planar diffusion-weighted imaging (RESOLVE-DWI) which quantitatively reflects the diffusion motion of water molecules for prognosis evaluation in nasopharyngeal carcinoma. Several prognostic radiomics models were established by using diffusion-weighted imaging, apparent diffusion coefficient maps, T2-weighted and contrast-enhanced T1-weighted imaging to predict the risk of recurrence or metastasis of nasopharyngeal carcinoma, and the predictive effects of different models were compared. The results show that the model based on MRI DWI can successfully predict the prognosis of patients with nasopharyngeal carcinoma and has higher predictive efficiency than the model based on the conventional sequence, which suggests MRI DWI-radiomics can provide a useful and alternative approach for survival estimation. Abstract Purpose: This study aimed to explore the predictive efficacy of radiomics analyses based on readout-segmented echo-planar diffusion-weighted imaging (RESOLVE-DWI) for prognosis evaluation in nasopharyngeal carcinoma in order to provide further information for clinical decision making and intervention. Methods: A total of 154 patients with untreated NPC confirmed by pathological examination were enrolled, and the pretreatment magnetic resonance image (MRI)—including diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) maps, T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI)—was collected. The Random Forest (RF) algorithm selected radiomics features and established the machine-learning models. Five models, namely model 1 (DWI + ADC), model 2 (T2WI + CE-T1WI), model 3 (DWI + ADC + T2WI), model 4 (DWI + ADC + CE-T1WI), and model 5 (DWI + ADC + T2WI + CE-T1WI), were constructed. The average area under the curve (AUC) of the validation set was determined in order to compare the predictive efficacy for prognosis evaluation. Results: After adjusting the parameters, the RF machine learning models based on extracted imaging features from different sequence combinations were obtained. The invalidation sets of model 1 (DWI + ADC) yielded the highest average AUC of 0.80 (95% CI: 0.79–0.81). The average AUCs of the model 2, 3, 4, and 5 invalidation sets were 0.72 (95% CI: 0.71–0.74), 0.66 (95% CI: 0.64–0.68), 0.74 (95% CI: 0.73–0.75), and 0.75 (95% CI: 0.74–0.76), respectively. Conclusion: A radiomics model derived from the MRI DWI of patients with nasopharyngeal carcinoma was generated in order to evaluate the risk of recurrence and metastasis. The model based on MRI DWI can provide an alternative approach for survival estimation, and can reveal more information for clinical decision-making and intervention.
Collapse
|
19
|
Liu K, Qiu Q, Qin Y, Chen T, Zhang D, Huang L, Yin Y, Wang R. Radiomics Nomogram Based on Multiple-Sequence Magnetic Resonance Imaging Predicts Long-Term Survival in Patients Diagnosed With Nasopharyngeal Carcinoma. Front Oncol 2022; 12:852348. [PMID: 35463366 PMCID: PMC9021720 DOI: 10.3389/fonc.2022.852348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Although the tumor–node–metastasis staging system is widely used for survival analysis of nasopharyngeal carcinoma (NPC), tumor heterogeneity limits its utility. In this study, we aimed to develop and validate a radiomics model, based on multiple-sequence magnetic resonance imaging (MRI), to estimate the probability of overall survival in patients diagnosed with NPC. Methods Multiple-sequence MRIs, including T1-weighted, T1 contrast, and T2-weighted imaging, were collected from patients diagnosed with NPC. Radiomics features were extracted from the contoured gross tumor volume of three sequences from each patient using the least absolute shrinkage and selection operator with the Cox regression model. The optimal Rad score was determined using 12 of the 851 radiomics features derived from the multiple-sequence MRI and its discrimination power was compared in the training and validation cohorts. For better prediction performance, an optimal nomogram (radiomics nomogram-MS) that incorporated the optimal Rad score and clinical risk factors was developed, and a calibration curve and a decision curve were used to further evaluate the optimized discrimination power. Results A total of 504 patients diagnosed with NPC were included in this study. The optimal Rad score was significantly correlated with overall survival in both the training [C-index: 0.731, 95% confidence interval (CI): 0.709–0.753] and validation cohorts (C-index: 0.807, 95% CI: 0.782–0.832). Compared with the nomogram developed with only single-sequence MRI, the radiomics nomogram-MS had a higher discrimination power in both the training (C-index: 0.827, 95% CI: 0.809–0.845) and validation cohorts (C-index: 0.836, 95% CI: 0.815–0.857). Analysis of the calibration and decision curves confirmed the effectiveness and utility of the optimal radiomics nomogram-MS. Conclusions The radiomics nomogram model that incorporates multiple-sequence MRI and clinical factors may be a useful tool for the early assessment of the long-term prognosis of patients diagnosed with NPC.
Collapse
Affiliation(s)
- Kai Liu
- Department of Head and Neck Comprehensive Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Qingtao Qiu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yonghui Qin
- Department of Head and Neck Comprehensive Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Chen
- Department of Head and Neck Comprehensive Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Diangang Zhang
- Department of Head and Neck Comprehensive Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Huang
- Department of Head and Neck Comprehensive Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yong Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ruozheng Wang
- Department of Head and Neck Comprehensive Radiotherapy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
20
|
Bao D, Liu Z, Geng Y, Li L, Xu H, Zhang Y, Hu L, Zhao X, Zhao Y, Luo D. Baseline MRI-based radiomics model assisted predicting disease progression in nasopharyngeal carcinoma patients with complete response after treatment. Cancer Imaging 2022; 22:10. [PMID: 35090572 PMCID: PMC8800208 DOI: 10.1186/s40644-022-00448-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/31/2021] [Indexed: 12/04/2022] Open
Abstract
Background Accurate pretreatment prediction for disease progression of nasopharyngeal carcinoma is key to intensify therapeutic strategies to high-risk individuals. Our aim was to evaluate the value of baseline MRI-based radiomics machine-learning models in predicting the disease progression in nasopharyngeal carcinoma patients who achieved complete response after treatment. Methods In this retrospective study, 171 patients with pathologically confirmed nasopharyngeal carcinoma were included. Using hold-out cross validation scheme (7:3), relevant radiomic features were selected with the least absolute shrinkage and selection operator method based on baseline T2-weighted fat suppression and contrast-enhanced T1-weighted images in the training cohort. After Pearson’s correlation analysis of selected radiomic features, multivariate logistic regression analysis was applied to radiomic features and clinical characteristics selection. Logistic regression analysis and support vector machine classifier were utilized to build the predictive model respectively. The predictive accuracy of the model was evaluated by ROC analysis along with sensitivity, specificity and AUC calculated in the validation cohort. Results A prediction model using logistic regression analysis comprising 4 radiomics features (HGLZE_T2H, HGLZE_T1, LDLGLE_T1, and GLNU_T1) and 5 clinical features (histology, T stage, N stage, smoking history, and age) showed the best performance with an AUC of 0.75 in the training cohort (95% CI: 0.66–0.83) and 0.77 in the validation cohort (95% CI: 0.64–0.90). The nine independent impact factors were entered into the nomogram. The calibration curves for probability of 3-year disease progression showed good agreement. The features of this prediction model showed satisfactory clinical utility with decision curve analysis. Conclusions A radiomics model derived from pretreatment MR showed good performance for predicting disease progression in nasopharyngeal carcinoma and may help to improve clinical decision making. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-022-00448-4.
Collapse
|