1
|
Kumar K, Gupta K, Sharma M, Bajaj V, Rajendra Acharya U. INSOMNet: Automated insomnia detection using scalogram and deep neural networks with ECG signals. Med Eng Phys 2023; 119:104028. [PMID: 37634906 DOI: 10.1016/j.medengphy.2023.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Sleep is a natural state of rest for the body and mind. It is essential for a human's physical and mental health because it helps the body restore itself. Insomnia is a sleep disorder that causes difficulty falling asleep or staying asleep and can lead to several health problems. Conventional sleep monitoring and insomnia detection systems are expensive, laborious, and time-consuming. This is the first study that integrates an electrocardiogram (ECG) scalogram with a convolutional neural network (CNN) to develop a model for the accurate measurement of the quality of sleep in identifying insomnia. Continuous wavelet transform has been employed to convert 1-D time-domain ECG signals into 2-D scalograms. Obtained scalograms are fed to AlexNet, MobileNetV2, VGG16, and newly developed CNN for automated detection of insomnia. The proposed INSOMNet system is validated on the cyclic alternating pattern (CAP) and sleep disorder research center (SDRC) datasets. Six performance measures, accuracy (ACC), false omission rate (FOR), sensitivity (SEN), false discovery rate (FDR), specificity (SPE), and threat score (TS), have been calculated to evaluate the developed model. Our developed system attained the classifications ACC of 98.91%, 98.68%, FOR of 1.5, 0.66, SEN of 98.94%, 99.31%, FDR of 0.80, 2.00, SPE of 98.87%, 98.08%, and TS 0.98, 0.97 on CAP and SDRC datasets, respectively. The developed model is less complex and more accurate than transfer-learning networks. The prototype is ready to be tested with a huge dataset from diverse centers.
Collapse
Affiliation(s)
- Kamlesh Kumar
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India.
| | - Kapil Gupta
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, India.
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India.
| | - Varun Bajaj
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, India.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
2
|
Gupta NS, Kumar P. Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine. Comput Biol Med 2023; 162:107051. [PMID: 37271113 DOI: 10.1016/j.compbiomed.2023.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Mounting evidence has highlighted the implementation of big data handling and management in the healthcare industry to improve the clinical services. Various private and public companies have generated, stored, and analyzed different types of big healthcare data, such as omics data, clinical data, electronic health records, personal health records, and sensing data with the aim to move in the direction of precision medicine. Additionally, with the advancement in technologies, researchers are curious to extract the potential involvement of artificial intelligence and machine learning on big healthcare data to enhance the quality of patient's lives. However, seeking solutions from big healthcare data requires proper management, storage, and analysis, which imposes hinderances associated with big data handling. Herein, we briefly discuss the implication of big data handling and the role of artificial intelligence in precision medicine. Further, we also highlighted the potential of artificial intelligence in integrating and analyzing the big data that offer personalized treatment. In addition, we briefly discuss the applications of artificial intelligence in personalized treatment, especially in neurological diseases. Lastly, we discuss the challenges and limitations imposed by artificial intelligence in big data management and analysis to hinder precision medicine.
Collapse
Affiliation(s)
- Nancy Sanjay Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
3
|
Xu S, Faust O, Seoni S, Chakraborty S, Barua PD, Loh HW, Elphick H, Molinari F, Acharya UR. A review of automated sleep disorder detection. Comput Biol Med 2022; 150:106100. [PMID: 36182761 DOI: 10.1016/j.compbiomed.2022.106100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 12/22/2022]
Abstract
Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand.
Collapse
Affiliation(s)
- Shuting Xu
- Cogninet Brain Team, Sydney, NSW, 2010, Australia
| | - Oliver Faust
- Anglia Ruskin University, East Rd, Cambridge CB1 1PT, UK.
| | - Silvia Seoni
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia; Centre for Advanced Modelling and Geospatial Lnformation Systems (CAMGIS), Faculty of Engineer and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Prabal Datta Barua
- Cogninet Brain Team, Sydney, NSW, 2010, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia; School of Business (Information System), University of Southern Queensland, Australia
| | - Hui Wen Loh
- School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, 599494, Singapore
| | | | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - U Rajendra Acharya
- School of Business (Information System), University of Southern Queensland, Australia; School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, 599494, Singapore; Department of Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
4
|
Que Z, Zheng C, Zhao Z, Weng Y, Zhu Z, Zeng Y, Ye Q, Lin F, Cai G. The treatment efficacy of pharmacotherapies for rapid eye movement sleep behavior disorder with polysomnography evaluation: A systematic review and meta-analysis. Heliyon 2022; 8:e11425. [DOI: 10.1016/j.heliyon.2022.e11425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/25/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
|
5
|
Sun C, Hong S, Wang J, Dong X, Han F, Li H. A systematic review of deep learning methods for modeling electrocardiograms during sleep. Physiol Meas 2022; 43. [PMID: 35853448 DOI: 10.1088/1361-6579/ac826e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Sleep is one of the most important human physiological activities and plays an essential role in human health. Polysomnography (PSG) is the gold standard for measuring sleep quality and disorders, but it is time-consuming, labor-intensive, and prone to errors. Current research has confirmed the correlations between sleep and the respiratory/circulatory system. Electrocardiography (ECG) is convenient to perform, and ECG data are rich in breathing information. Therefore, sleep research based on ECG data has become popular. Currently, deep learning (DL) methods have achieved promising results on predictive health care tasks using ECG signals. Therefore, in this review, we systematically identify recent research studies and analyze them from the perspectives of data, model, and task. We discuss the shortcomings, summarize the findings, and highlight the potential opportunities. For sleep-related tasks, many ECG-based DL methods produce more accurate results than traditional approaches by combining multiple signal features and model structures. Methods that are more interpretable, scalable, and transferable will become ubiquitous in the daily practice of medicine and ambient-assisted-living applications. This paper is the first systematic review of ECG-based DL methods for sleep tasks.
Collapse
Affiliation(s)
- Chenxi Sun
- School of Artificial Intelligence, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, 100871, CHINA
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, Beijing, 100871, CHINA
| | - Jingyu Wang
- Sleep Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, CHINA
| | - Xiaosong Dong
- Sleep Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, CHINA
| | - Fang Han
- Sleep Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, CHINA
| | - Hongyan Li
- School of Artificial Intelligence, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, Beijing, 100871, CHINA
| |
Collapse
|
6
|
Predicting the Severity of Lockdown-Induced Psychiatric Symptoms with Machine Learning. Diagnostics (Basel) 2022; 12:diagnostics12040957. [PMID: 35454005 PMCID: PMC9025309 DOI: 10.3390/diagnostics12040957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/05/2022] Open
Abstract
During the COVID-19 pandemic, an increase in the incidence of psychiatric disorders in the general population and an increase in the severity of symptoms in psychiatric patients have been reported. Anxiety and depression symptoms are the most commonly observed during large-scale dramatic events such as pandemics and wars, especially when these implicate an extended lockdown. The early detection of higher risk clinical and non-clinical individuals would help prevent the new onset and/or deterioration of these symptoms. This in turn would lead to the implementation of public policies aimed at protecting vulnerable populations during these dramatic contingencies, therefore optimising the effectiveness of interventions and saving the resources of national healthcare systems. We used a supervised machine learning method to identify the predictors of the severity of psychiatric symptoms during the Italian lockdown due to the COVID-19 pandemic. Via a case study, we applied this methodology to a small sample of healthy individuals, obsessive-compulsive disorder patients, and adjustment disorder patients. Our preliminary results show that our models were able to predict depression, anxiety, and obsessive-compulsive symptoms during the lockdown with up to 92% accuracy based on demographic and clinical characteristics collected before the pandemic. The presented methodology may be used to predict the psychiatric prognosis of individuals under a large-scale lockdown and thus supporting the related clinical decisions.
Collapse
|
7
|
Petmezas G, Stefanopoulos L, Kilintzis V, Tzavelis A, Rogers JA, Katsaggelos AK, Maglaveras N. State-of-the-art Deep Learning Methods on Electrocardiogram Data: A Systematic Review (Preprint). JMIR Med Inform 2022; 10:e38454. [PMID: 35969441 PMCID: PMC9425174 DOI: 10.2196/38454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools that can provide useful information regarding a patient’s health status. Deep learning (DL) is an area of intense exploration that leads the way in most attempts to create powerful diagnostic models based on physiological signals. Objective This study aimed to provide a systematic review of DL methods applied to ECG data for various clinical applications. Methods The PubMed search engine was systematically searched by combining “deep learning” and keywords such as “ecg,” “ekg,” “electrocardiogram,” “electrocardiography,” and “electrocardiology.” Irrelevant articles were excluded from the study after screening titles and abstracts, and the remaining articles were further reviewed. The reasons for article exclusion were manuscripts written in any language other than English, absence of ECG data or DL methods involved in the study, and absence of a quantitative evaluation of the proposed approaches. Results We identified 230 relevant articles published between January 2020 and December 2021 and grouped them into 6 distinct medical applications, namely, blood pressure estimation, cardiovascular disease diagnosis, ECG analysis, biometric recognition, sleep analysis, and other clinical analyses. We provide a complete account of the state-of-the-art DL strategies per the field of application, as well as major ECG data sources. We also present open research problems, such as the lack of attempts to address the issue of blood pressure variability in training data sets, and point out potential gaps in the design and implementation of DL models. Conclusions We expect that this review will provide insights into state-of-the-art DL methods applied to ECG data and point to future directions for research on DL to create robust models that can assist medical experts in clinical decision-making.
Collapse
Affiliation(s)
- Georgios Petmezas
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leandros Stefanopoulos
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Kilintzis
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Tzavelis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - John A Rogers
- Department of Material Science, Northwestern University, Evanston, IL, United States
| | - Aggelos K Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Differentiation Model for Insomnia Disorder and the Respiratory Arousal Threshold Phenotype in Obstructive Sleep Apnea in the Taiwanese Population Based on Oximetry and Anthropometric Features. Diagnostics (Basel) 2021; 12:diagnostics12010050. [PMID: 35054218 PMCID: PMC8774350 DOI: 10.3390/diagnostics12010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/16/2023] Open
Abstract
Insomnia disorder (ID) and obstructive sleep apnea (OSA) with respiratory arousal threshold (ArTH) phenotypes often coexist in patients, presenting similar symptoms. However, the typical diagnosis examinations (in-laboratory polysomnography (lab-PSG) and other alternatives methods may therefore have limited differentiation capacities. Hence, this study established novel models to assist in the classification of ID and low- and high-ArTH OSA. Participants reporting insomnia as their chief complaint were enrolled. Their sleep parameters and body profile were accessed from the lab-PSG database. Based on the definition of low-ArTH OSA and ID, patients were divided into three groups, namely, the ID, low- and high-ArTH OSA groups. Various machine learning approaches, including logistic regression, k-nearest neighbors, naive Bayes, random forest (RF), and support vector machine, were trained using two types of features (Oximetry model, trained with oximetry parameters only; Combined model, trained with oximetry and anthropometric parameters). In the training stage, RF presented the highest cross-validation accuracy in both models compared with the other approaches. In the testing stage, the RF accuracy was 77.53% and 80.06% for the oximetry and combined models, respectively. The established models can be used to differentiate ID, low- and high-ArTH OSA in the population of Taiwan and those with similar craniofacial features.
Collapse
|